A Criterion to Enforce Correctness of

Indirectly Cooperating Applications

G. Canals**, C. Godart*, P. Molli* and M. Munier*
CRIN/CNRS, Batiment LORIA, Campus scientifique
B.P. 239, 54506 Vandceuvre-les-Nancy CEDEX
*Université de Nancy [-ESSTIN; **Université de Nancy 2;
godart@loria.fr

Abstract

Cooperative applications are expected to become
commonplace in the future. We are concerned
here with a special case of cooperation called in-
direct cooperation. The idea of the paper is that
a Concurrency Control approach better fits to in-
direct cooperation than a Concurrent Programming
one. In other words, it does exist syntactic correct-
ness criteria which defines a large sphere of secu-
rity in which application programmers are released
from the burden of interaction explicit program-
ming. This paper arguments this point of view and
describes such a criterion: the COO-Serializability.
It applies for a class of applications which cooperate
indirectly.

Keywords: Cooperation, Concurrency control,
Concurrent Programming, Correctness Criterion,
Cooperative Programming, Cooperative Execution

1 Introduction

Cooperative applications are expected to become
commonplace in the future. We are concerned here
with a special case of cooperation that we called
indirect cooperation. The idea of the paper is that
a Concurrency Control approach better fits to indi-
rect cooperation than a Concurrent Programming
one. In other words, it exists syntactic correctness
criteria which define a large sphere of security in
which application programmers are released from
the burden of programming interactions explicitly.
This paper presents such a criterion called COO-

Serializability and demonstrates its applicability in
a class of applications which cooperate indirectly.

Section 2 intuitively defines the idea of indirect
cooperation and introduces the principle on which
we found correctness: a separation between correct-
ness of interactions and individual correctness of
cooperating activities. Section 3 defines and spec-
ify our correctness criterion. Section 4 is about the
implementation of this criterion: it gives an im-
plementable protocol, discusses some interactions
between the correctness of interaction and the in-
dividual correctness of applications and describes
some experimentations we have done and we are
doing. Section 5 compares our proposition with
some related work and finally concludes. The pa-
per is illustrated with software engineering example
which is our initial experimentation field.

2 Indirect cooperation: Def-
inition and Correctness
Principle

2.1 Indirect cooperation: definition

A cooperative application is a set of interac-
tions between a set of active (software or human)
activities. Activities interact (cooperate) when
they share objects not only at the start and at the
end of their execution, as in traditional database
applications, but during their execution. Activities
communicate through peer to peer communication
channels or through cooperation spaces, especially
common repositories.

Indirect cooperation In this paper, we are con-
cerned with applications in which cooperation is
mainly indirect, i.e. in which interactions are sup-
ported by asynchronous exchanges of objects which
are not directly devoted to cooperation but which
are products of the application. This includes a
large domain of applications in which people con-
tribute to a (rather) long term common objective.
This is the case, as example, of software engineer-
ing applications in which people cooperate by shar-
ing software artifacts like specification, source and
documentation objects. More generally, this is the
case of most concurrent enginnering applications
like the design of a large building or the design,
development and maintenance of some urban net-
works. We can also define indirect cooperation in
contrast to close cooperation in which activities co-
operate closely in the same space to a generally
short term objective.

The more common way for two activities to in-
teract indirectly is by exchanging items through a
common repository.

Main properties of indirect cooperating ap-
plications These applications are:

1. cooperative, in the sense that programs want
to interact in order to get some advantages
from interactions with others. This is in op-
position with concurrent activities, in which
programs are in competition, ignore each other
and meet others by hazard,

2. asynchronously cooperative, in the sense that
interactions are not precisely forecast, not pre-
programmed,

3. interactive: we are clearly concerned with ap-
plications in which control relies on the respon-
sibility of human agents,

4. of uncertain development: when such an appli-
cation starts its execution, the program of this
execution is not completely defined. At the
opposite, it is incrementally built in response
to human agent initiatives and to interactions.
As an example, a simple syntax correction ac-
tivity can be sufficient to fix a bug in a pro-
gram, but a software re-design activity can also
be requested to fix a bug in another program,

5. of long duration: they can spend over a long
period of time: several hours, days or months.
This is generally the case of most design activ-
ities,

6. reversible. A decision, and the corresponding
program execution is not irreversible. At the
opposite, it can be compensated by executing a
program, may be the same applied to different
data, or another one statically forecast for this
purpose, or finally one dynamically defined to
reach a new consistent state.

Cooperation paradigms To be a little more
concrete, we pointed out three situations that may
occur during concurrent engineering and that we
feel representative of indirect cooperation. These
situations, called paradigms later, come from some
observations during previous experiences in the
software process field. If it is clear that they do not
represent all the cooperation behaviors, we believe
that these paradigms, and combinations of them
cover a large set of cooperative executions.

The server-consumer paradigm corresponds to
the case in which a process, hereinafter called the
consumer reads values produced by another pro-
cess, the server. When the two processes execute
in parallel, such exchanges can occur one of several
times before the server terminates. This situation
may occur, when a sub-process which develops a
document includes a section which is written under
the responsibility of another sub-process; a typical
situation in software development and more gener-
ally cooperative editing.

The cooperative write paradigm corresponds to
the case in which two processes modify the same
object at the same time and exchange values of
this object. The two processes involved in a coop-
erative write relationship are simultaneously server
and consumer for one another for the same object:
the server/consumer relationships form a cycle on
the same object.

The server-reviewer paradigm corresponds to the
case in which a process produces values which are
read and used by a second process to produce values
of other objects. These values are in turn read by
the first process and influence its own work. This
corresponds to the case where server/consumer re-
lationships form a cycle, like in the cooperative

write paradigm, but involves different objects. This
is typical of most review/inspection processes.

2.2 Correctness principle

A concurrency control approach rather than
a concurrent programming one Due to their
indirect and asynchronous nature, it seems difficult
for a programmer or a set of programmers to have a
global view of the application and to explicitly pro-
gram all the interactions between applications: it
is necessary to release programmers from the bur-
den of interaction programming. In other terms, it
must be possible to program a large part of cooper-
ating activities independently of each other: appli-
cation programmers should be concerned with the
behavior of each activity individually, not with the
interactions with other activities. In relation with
these remarks, we believe that a concurrency con-
trol approach is better adapted to our class of ap-
plications than a concurrent programming one [5].
Thus, we found correctness of cooperative execu-
tions on a correctness criterion in the spirit of cri-
teria defined for concurrency control purposes, i.e
a criterion which is as much as possible not de-
pending on the semantics of the application being
synchronized [3]. Another argument in favor of the
Concurrency Control approach is that, on the one
hand, due to their uncertainty, it is not possible to
assert correctness of executions of cooperative ap-
plications a priors; on the other hand, due to their
long duration, it is not possible to do it a posteriori:
this must be done incrementally.

Two orthogonal dimensions More precisely,
we distinguish as much as possible between the
problem of correctness of interactions, or the
problems related to the parallelism of executions,
and the correctness of individual work, also
called consistency of products, or the problems
related to the fact that the right operation is ap-
plied to the right product at the right time, inde-
pendently of interactions due to parallelism. Thus,
we found the correctness of execution on two or-
thogonal dimensions:

e correctness of interactions is based on a syntac-
tic criterion (a characterization of the traces of
correct executions). This is addressed in sec-
tion 3,

Produce Object Code

Produce (bj ect Code

for A for B
begi n .
begi n
read(modul eA) r ead(nodul eB)
edit(Ah) edit(B.h)
wite(Ah) \ '

. read(A-h)
edit(Ac) edit(B.c)
compile(Ac) compile(B.c)
edit(Ah) edit(B.h)
wite(Ah) \ '

. read(A-h)
edit (A c) edit(B.c)
conpile(Ac) N

| B.
edit(Ah) conpi fe(B.c)

wite(Ah)
edit(Ac)
edit(Ah)
conpile(Ac)

terminate-wite(A)

term nate - FAILED
//\

read(A h)

term nate - FAILED

edit(B.c)

conpile(B.c)

termnate - wite(E

Figure 1: Correctness of interactions and correct-
ness of products

(a) COO approach

- —_— —

(b) Semantics based approach

Ocorrect ion of interactions

L ~
-~

sconsistency of products

correct execution

Figure 2: Correctness of executions

e consistency of products is based on semantics
rules which control the ordering of the oper-
ations with regards to the states of products.
Although, this is not a central topic of this pa-
per, we consider it quickly in section 4.2.

In this context, an execution in which some activ-
ities interact indirectly is correct if it verifies both
the syntactic rules related to the correctness of in-
teractions and the semantic rules related to the con-
sistency of products. This is the general approach
used in most traditional database applications, but
with one major difference: in cooperative applica-
tions, activities can exchange results when execut-
ing, while this is forbidden by traditional concur-
rency control algorithm. We come back on this
difference in the following.

The scenario in figure 1 illustrates this principle.
It simply depicts an execution in which two activi-
ties interact to produce the object code of a module
A and the object code of a module B (suppose this
code written in C language) with the constraint
that B depends on A : the interface of A (A.h) is
included in the body of B (B.c). Intuitively, this
execution is correct if B is compiled with the last
version of A.h. We break down this problem of
correctness into two sub-problems:

1. the process in charge of developing module B
can read some preliminary versions of A.h, but
it must read the final value of this file; that is
an instance of a general (non semantic) rule:
when an activity has read an intermediate re-
sult (also called inconsistent value) of another,
it must read the corresponding final result.
This rule manages the correctness of interac-
tion between A and B. In the scenario in figure
1, the first attempt to terminate issued by B
in the scenario is aborted due to the fact that
B has not read the final value A.h: it does not
verify the syntactic rules.

2. The last value of A.h must be included in the
last value of B.c (we suppose that it is implic-
itly done by edit(B.c)). Or in other words,
the last value of B.c must be compiled with
the last value A.h. This is a semantic rule di-
rectly related to the context of our application:
programming in C. This rule manages the in-
dividual correctness of B. The second attempt
to terminate issued by B is aborted due to the

fact that B has not edited B.c with a consistent
value of A.h. It does not verify this semantic
rule. Another semantic rule prevents B to ter-
minate if it has not compiled the last edited
value of B.c.

To simplify, the general idea is that the syntactic
criterion defines a large sphere of security which is
restricted by the semantic rules (see figure 2 (a)).

3 Correctness of interactions

To characterize the set of correct interactions, we
have defined a correctness criterion called COO-
serializability. To specify it, the principle is to store
the sequence of some specific events, i.e to build
an history of the execution, and to verify that this
history respects some well defined properties. The
events that we consider are the read and write op-
erations. An activity reads an object to transfer it
from a repository to its workspace. The write op-
eration is the reverse one which transfers an object
from the activity workspace to a repository. read!
and write? are abstractions for, as two examples,
a file open and file free in the context of a Unix
tool, or for check_in, check_out in the context of a
versioned environment.

To formalize these criteria we use the notation
introduced in the ACTA3 model [18]. These nota-
tions are based on set theory and first order logic.

Before to detail our general criterion, let us
describe a first criterion called CS-serializability
which is a first step towards COO-serializability.

3.1

CS-serializability supports the case where an ac-
tivity a; reads one (or several) intermediate(s) re-
sult(s), also called inconsistent value(s)*, produced

CS-serializability

lxo < read(x) means: read the value of the object z
from the repository to the variable xg

2write(z, o) means: write the object 2 in the repository
with the value of the variable x¢

3for people who are not familiar with these notations, we
gives the basic ACTA definitions in annex 6.1)

4intuitively, the idea is that a result which is not the fi-
nal result of an activity is potentially inconsistent because it
may not respect all the constraints of the product: as exam-
ple, it is current in the first stages of a software development
to share some source documents which consciously content
some definitions in natural language

by another activity ag. This is typically the case of
the server/consumer paradigm. To illustrate that,
suppose a cooperative execution of {ag, a1} where
data exchanges are oriented from ag to a; as in the
following schedule (figure 3):

ag ay
o < read(x) y1 < read(y)

write(T, To P~

write(z, zp)

write(z, zo >\
ag commit

Nz« read(z)
write(y,y:)

\xl = read(z)
write(y, 1)
ay commit

Figure 3: Cooperative history

In this execution, a; reads an intermediate (pos-
sibly inconsistent) value of z produced by ag. If we
observe the effect of this execution on the database
and if we suppose that activities work well individ-
ually, we can conclude that only some operations
are important to reason about the correctness of
interactions. In fact, the same operation applied
to the same objects is repeated several times. If we
consider that each occurrence compensates the pre-
vious one, the highlighted execution in figure 4 has
the same effect on the repository than the previous
one.

]

@0 «— Tead(zD

write(z, o)

@1 — read(yD

1 read(z)
write(y, y1)

write(z,)
write(z, Tp)

agp commit
1 = read(z)
write(y,y1)
ay commit

Figure 4: Serializable useful history

We can easily verify that the highlighted useful
history in this log is serializable: it is equivalent to
a serial execution of ag followed by a;. Given that,
if we suppose that a serial execution is correct, we
can conclude that the whole cooperative execution
is correct.

The issue now is to extract the useful sub-history
from a cooperative history. To support this, we

ap al
Zo < read(z) p1 < read(y)

write(z, To P~

write(z, To) write(y,y1)

write(z, zo)
ag commit

a1 commit

Figure 5: Serializable but not correct useful history

have defined to the Last occurrence and the Commit
Propagation axioms.

1. Last occurrence axiom. The last occurrence
axiom generalizes the remark above. Cooper-
ation leads to repeated occurrences of the same
operations applied to the same objects. Thus,
in general, the history of a cooperative exe-
cution contains several sequences of identical
operations. In our example, ag repeats three
times write(x, zo). We consider that in such a
case, it is sufficient to retain in the useful his-
tory only the last occurrence of each operation
sequence. The intuitive justification is that the
last value of an object (we say the committed
value) that an activity writes is considered as
consistent by definition. This is captured by
the following first axiom:

AxioM 1 (LAST OCCURRENCE)

Let H be an history (defined in 6.1), let Q; be
a sequence of operations ¢;[ob] on an object ob
produced by an activity ¢. For each object, it
must exist at least one committed operation ¢
which is not followed by an uncommitted op-
eration in @

(Commit, € H) = Yob,VQ¢,q € Q;

(Vq' € Qt,q' # g q;[ob] — g¢[ob])
A(Commit[q.[ob]] € H)

This axiom defines a sub-history H' obtained
from H by selecting the last occurrence of each
operation sequence. However, it is not suf-
ficient to determine a useful history equiva-
lent to the whole execution: some other oc-
currences need to be added to H' as we will
see now. Suppose that a; does not repeat the

operation read(x), after applying the Last Oc-
currence axiom; we obtain the following exe-
cution (the sub-execution is highlighted) (see
figure 5):

It is easy to see that results of a; are pro-
duced with a potentially inconsistent value of
z. The trouble is that an operation is commit-
ted while it depends of an uncommitted oper-
ation: we observe that the operation read(z)
of a; is committed although the operation
write(z,z9) of ag on which it depends is un-
committed. Thus, this operation should be
also selected in the useful history, in addition
to these selected by the Last Occurrence Ax-
iom. This is the role of the Commit Propaga-
tion Axiom.

2. Commit Propagation Aziom To solve
this problem, we use the ACTA
return_value_dep(p, q) predicate which
allows to represent this dependency. If

return_value_dep is true, then the result of
gy [ob] depends on the operation p;[ob]. We
can instantiate the return_value predicate
with read/write operations:

(a) return_value_dep(read;[ob], write;[ob])
means that reading the value of ob in
an activity ¢ has an effect on the next
writing of ob in the same activity.

return_value_dep(write;[ob], read;[ob])
means that reading the value of ob in an
activity j depends on a previous writing
of this object by an activity .

Now, we can introduce the second axiom of
CS-serializability:

AxioMm 2 (CoOMMIT PROPAGATION)
All committed operations must depend on
committed operations.

(Commit[qi[ob]] € H) =
3p (py [0b] — gi[ob]
Areturn_value_dep(p, q))
= (Commit, [p, [ob]] € H)

Using these two axioms, we are now able to spec-
ify CS-Serializability by transforming the classical
definition of serializability in order to integrate the
fact that activities can read inconsistent values.

DEFINITION 1 (CS-SERIALIZABILITY)

Let T be a set of activities. Let H be the log of
events produced by activities belonging to T'. Let
C.s be a binary relation between activities belong-
ing to T such that:

Vi, t; €T, t; #* tj, (tiCcstj) if dob dp, q

(commiity, [py; [ob]] € H A commity, [qq;[ob]] € H)

A(con flict(pt,; [0b], gi; [0D]))
A(py; [0b] = qq;[0b])

Let C}, the transitive closure of C., ;i.e.:
(tiChtr) if (8Cestr) V Tt (tiCesty A ;Co tE)
H is CS-serializable iff: Vt € T, ~(tC%,t)

Intuitively, t;C.st; if it exists a semantical depen-
dency between an operation of ¢; and an operation
of t; and t; precedes t; in H. An history is CS-
serializable it these dependencies do not create a
cycle in the history.

It is interesting to note that if all operations are
committed, the above definition is equivalent to the
classical definition of serializability. In other terms,
all serializable executions are CS-serializable. A
serializable execution is a cooperative execution
where no data exchange occurs during the execu-
tion.

To illustrate these definitions, let us consider the
two following executions. Figure 6 depicts a CS-
serializable execution. The figure depicts the ex-
ecution analysis in three time: the first one rep-
resents the initial execution, the second one high-
lights the sub-execution determined by the Last Oc-
currence axiom and the last step highlights the sub-
execution determined by the Commit Propagation
axiom. This execution is CS-serializable because
the useful history is serializable.

Figure 7 describes a non CS-serializable history.
This example is the same as in figure 6 except that
a1 does not read the last version of z. As a conse-
quence, the Commit Propagation axiom forces the
”first” write of by ag to be committed and the
useful history is not serializable.

3.2 COO-serializability

Now, we deal with the general case: activities can
mutually read inconsistent values each from the
others, either directly through one object (case

A A A(] Al A(] Al
Py d(z()] 1 read(z)
write(z) write(z) write(z)
read(x) read(zx) read(z)
write(y) = write(y) write(y)
write(z) write(z) ~
reqd(z) read(z) read(z)
write(y) write(y) write(y)
Figure 6: A CS-serializable execution
M M Ay A Ao A1
0 1
read(z) read(z)
write(z) write(z)
read(z) = Teﬂ_d(z) ~¢read(z)
@ write(y) = write(y) write(y)
write(z write(z
write(y) write(y) write(s)

Figure 7: A non CS-serializable execution

of cooperative write) or indirectly through several
objects (case of crossed server/consumer and/or
server/reviewer). This can lead to histories that
are not CS-serializable as depicted in figure 8.
More precisely, the resulting useful history is not
serializable due to the existence of cycles in CJ,.
However, this class of execution is very representa-
tive of cooperation and thus need to be supported.
Our approach is to extend CS-serializability with
the notion of cooperative serializability [12, 18].
The idea is to group activities implied in a cycle
and to allow the members of a group to freely co-
operate over some shared objects before to commit
”simultaneously” one single consistent set of the
shared objects (we say also to commit one state).
This is governed as follows:

1. all conflicts occurring between activities be-
longing to the same group are ignored,

2. CS-serializability is required between the ac-
tivities which do not belong to a group with
respect to all the activities in the group.

The following definitions extends CS-

serializability to integrate this idea.

DEFINITION 2 (COOQO-SERIALIZABILITY)
Let T, be a group of activities, T, C T. Let Cco0 a

binary relation on 7. Let H an execution of activ-
ities belonging to T'.

Vi, t; € Tt #t;
vVT.CT, (ticcootj) iff
tz’ ¢ Tc: tj ¢ Tc(ticcstj) \4
t; ¢ T., tj S Tc(tiCCStj \Y tjCcsti)
H is COO-serializable if Vt € T—(tC? t)

coo

Intuitively, an execution is COO-serializable if
groups of activities and single activities (which do
not participate to a group) are CS-serializable.

As example, in the execution depicted in figure 9,
ap is CS-serializable with respect to {a1,a2} and
conflicts occurring between {a1, a2} are ignored be-
cause a; and ay belong to the same group.

However, this is not completely satisfactory for
two reasons.

The first is the lack of control within a group
which can cause serious problems as illustrated in
figure 9 where {a1,a2} commits while as has not
read the value of y committed by a;. Thus, the
execution of {a;,az} produces a single state but a
is not aware of the value of y belonging to this state.
Unfortunately, the last value of y may be consistent
from the point of view of a; but not from this of
as.

Ao

read(z)
write(z, zg)

read(z)
write(z, zg)

Ao A
A read(z) read(z)
read(z) write(z, zg)
read(z)
read(z)

write(z, T1)
read(z)

fntetam) >

read(z)

Ao

Ax

read(z)
write(z, zo) ~

read(z)

read(z)

write(z,)

read(z)
write(z, zg) ~

read(z)

Figure 8: CS-serializability with mutual inconsistent read

ag ay az
ag a as Q‘ead(zD
read(z) write(z)
write(z) read(z) read(z)
read(z) read(z) write(y)
write(y)
el -
read(y) read(y)
write(z)
read(z) read(s)
write(y) -
read(z) write(y)
read(z)

ag ay Qs
write(z)
read(z) read(z)
ErN
et
| ~(write(y)

Figure 9: A non COO-serializable execution with {a;, a2} in the same group (a)

Group Convergence To avoid such a case, we
force activities belonging to the same group to con-
verge to a unique final state i.e. all activities of a
group which share the same object must agree on
the committed value of this object. In an history,
this is characterized by the fact that each activity
must read the final value of the other activities of
the group. This is formalized by the group conver-
gence axiom.

AxioM 3 (GROUP CONVERGENCE)
Group Convergence to a unique final state:

(Commity € H) At € Tepo =
YobVq(State(H°Y)) #£ State(H® o q))A
(commiity, [qe; [0b]] € H) At; #t =
Ap (return_value_dep(q, p)\
(State(H®) = State(H o p))A
(gt; [0b] = piob]) A commiit,[p[ob]] € H)

Intuitively, if we consider to simplify that ¢ is a
write operation and p a read operation. This ax-
iom means that each write event committed by an

activity a; must be followed by a read event com-
mitted by any activity a; which has previously read
ob (meaning of return_value_dep in this context).

Group Condition The second problem is that it
is necessary to dynamically find, by analyzing the
history which activities must be grouped. This is
formalized by the Group Condition axiom:

DEFINITION 3 (GROUP CONDITION)

Let T be the set of activities. Let H be the log of
events produced by activities. Let C4cp be a binary
relation on T such that:

ti,t]’ € T, ti 75 tj, tiCdeptj iffHob, Elp, q
((pe; [ob] = gy, [0b]) A return_value_dep(p, q))

tis tj SN iﬂ((tiC;eptj) A (tjC;epti))

The execution depicted in figure 10 is COO-
serializable: the Group Condition definition forces
{a1,a2} to be grouped and the Group Convergence
axiom is also respected: as reread the last value of
y produced by a;.

ag ay
a0 a as read(z)
read(x) write(z)
write(z) read(z)
read(z) read(z) write(y)
write(y)
read(g(/))
write(y) =
read(y)
write(z) i) write(z)
Teads read(z)
write(y) write(y)
read(zx)
read(y)

read(z)

g

a

write(z)

write(z%

Figure 10: A COO-serializable execution with {aj,as} in the same group (b)

read(z)

oait)

write(y)

4 Implementing COO-

Serializability

A problem with such a criteria is its implementabil-
ity, We have demonstrated it by implement-
ing a protocol that accepts only COO-serializable
executions. If it accepts only COO-serializable
executions, it do not accept all (correct) COO-
serializable executions. This is due to the complex-
ity of proving COO-serializability, which is at least
as complex as proving serializability, which is itself
a NP complete problem.

This protocol is sketched out in section 4.1 (the
reader can see [13], pages 117 to 128 for a precise
description of the algorithm in VDM). The interac-
tions of this protocol with the enforcement of the
semantic rules, related to the correctness of individ-
ual work, is discussed later in 4.2. 4.3 describes one
application in the context of software engineering
and a second in this of concurrent engineering.

4.1 The COOQO protocol

CS-serializability The rules to support CS-
serializability are the following.

1. A result produced before the end of an activity
is always an intermediate result. Users can
call, at any time, the operation IR — write to
produce an intermediate result.

2. A result produced at the end of an activity
is a final result. All final results are pro-

duced atomically during the execution of the
terminate operation.

3. An activity that produces an intermediate re-
sult must produce a corresponding final result.
The protocol collects all the objects that were
“IR — written” by the activity and automat-
ically produces a final result for each of them
during the termination phase of the activity.

4. If an activity reads an intermediate result,
then it must read the corresponding final re-
sult. The system maintains dependency rela-
tionships between activities to memorize the
fact that an activity reads an intermediate re-
sult from another. When an activity A; reads
the intermediate value of an object x produced
by an activity Ag, then a dependency A; = Ag
is created. When the activity A; reads a value
of z and Ay is terminated (i.e. when it has pro-
duced its final results), then the dependency is
removed (A; 4 Ag).

5. an activity cannot terminate if it is still de-
pendent on another. If an activity tries to
terminate without reading the final value of
some object after a previous access to an in-
termediate value of this object, the terminate
operation is aborted and the activity remains
active.

COO-serializability This first set of rules im-
plements the CS-serializability. To implement
COO-serializability, this set must be extended with

the following. They are mainly devoted to the ter-
mination of sets of cyclically dependent activities.
The strategy is to make them terminate simulta-
neously and allow this termination to occur only
when they have converged to a common value for
all the objects they share:

1. Activities involved in a cyclic dependency

graph form a group of activities.

. A group-member activity can start a group
termination by trying to terminate itself.
The terminate operation in this case pro-
duces a set of potentially final results and
changes the state of the activity from active
to ready to terminate (RTT).

. When a group-member activity tries to
terminate and all the other group-members
are in the RTT state, then all the activities
are terminated simultaneously. Potentially fi-
nal results are definitely promoted to final re-
sults.

. When a group-member activity tries to
terminate and there is another group-member
still active, then it produces new potentially
final results and enters the RTT state.

. If a group member produces a new intermedi-
ate result during the group termination phase,
then this termination tentative is aborted,
and all the group-members re-enter the active
state. This is the way for an activity to clearly
indicate its disagreement with the object val-
ues produced by the group, and to ask for more
work on the shared objects.

One can observe that, as an activity is automat-
ically added to a cooperative group upon its par-
ticipation in a cycle, we risk having all activities
ending up in one big group which may in turn pre-
vent the group to converge at all. In fact, if this
phenomenon cannot be theoretically excluded, it is
limited as a result of the workflow of cooperative
applications which ensures globally that applica-
tions progress towards their goal. We experimented
this behavior in the context of software engineering
applications in which interactions are nevertheless
Very numerous.

One can also observe that, if the protocol im-
poses an activity, which has read an intermediate

10

result z, to read the final version of z, it imposes
nothing to prevent some inconsistencies to appear
if the value of z is used to modify another object
y. In fact, we completely delegate the propaga-
tion of final version reads, which is internal to each
activity, to the evaluation of constraints as intro-
duced in the following section. This allows a clear
distinction between the correctness of interactions
between activities, and the individual correctness of
activities. In addition, it is to be underlined that
the automatic detection of dependencies is a very
tricky problem for which we have not a complete
solution.

4.2 Evaluating constraints in the

COO protocol context

Correctness of interactions, as defined in the above
section, delimits a large sphere of security by as-
serting that the rules concerning the organization
of data exchanges have been respected. However,
there is a strong assertion at the basis of COO-
Serializability: activities commit consistent values,
or in other terms, work well individually. Coming
back to our example in figure 1, it is not sufficient
for the correctness of the execution to impose the
last version of A.h to be read by B, as the commit
propagation axiom imposes. We must be sure that
this version is effectively integrated in the work of
the client activity B, i.e is included in B.c which
is then compiled again. This is done by taking
into account some knowledge on the activity be-
ing synchronized. In this example the rule can be:
”each time an include file is modified, the source
files which include it must be compiled again”. It is
well understood that such a rule, as it is dedicated
to correctness of individual work, applies locally,
in the context of one activity; as it is not related
to correctness of interactions, it does not apply be-
tween activities.

More generally, our approach to guarantee con-
sistency of committed values is to base individ-
ual work correctness on semantic rules. This is in
the spirit of integrity constraints in the domain of
databases.

The general relationship between syntactic rules
and semantic rules is expressed in figure 2-a: se-
mantic rules are used to restrict the sphere of secu-
rity defined by the correctness of interactions. Con-
straints evaluation occurs when an activity wants

to terminate its execution and only if the syntactic
rules are enforced.

This is classical in traditional databases, but the
problem is more complex due to some definitions
of the above protocol, and more generally to coop-
eration. The COO protocol imposes classical con-
straint evaluation technics to evolve. This section
is an overview of these problems. For a deepened
view, see [21].

The first problem is that cooperation behaviors
are based on the ability to share preliminary, in-
consistent results. A first question which arises at
this point is: what to do when a constraint cannot
be immediately evaluated due to the fact that the
value of an object implicated in the constraint is an
intermediate result ?

Three different strategies can be considered:

1. the current activity can terminate even if all
the constraints are not validated. This means
that the activity delegates the responsibility of
constraint validation to another active activity.
This makes the hypothesis that, in the case
where the terminating activity has corrupted
the object base, the work of this activity can
be compensated by another activity.

. Constraints are evaluated with the last consis-
tent values which correspond to the intermedi-
ate results which forbid the evaluation of con-
straints. This means that we want to compare,
to assemble objects of different generations. Is
it realistic in the context of long term processes
as our activities are ?

The current activity does not terminate: it
continues its execution waiting until the con-
straints can be evaluated. Intuitively, this
means that activities cooperate to validate
constraints.

The second problem is due to the grouping of
activities (in fact the Group Convergence Axiom)
which considers that activities in a cycle of depen-
dencies must produce a unique new state of the
repository. A problem occurs when the consistency
of products imposes an order on the activities which
are in the cycle. As an example, how to interpret a
vivacity constraint like: from a consistent state z,
it is inevitable to go through a consistent state y be-
fore to enter in a consistent state z, when the three

11

states are committed by three activities which are
grouped due to the Group Convergence axiom and
as a consequence must produce one unique state
from the point of view of correctness of interactions
0

One can explain that it is a problem of design
and that somewhere the semantics rules are error
prone: this can be the case, but this can also be
due to the fact that correctness of interactions can
group together two activities because of two depen-
dencies which do not address the same set of ob-
jects (two sets of objects not directly semantically
related each to the other). We can suppose that
this will occur rarely, due to the intuitive definition
of an activity, which, even if cooperating, groups
together operations operating a well defined set of
inter-related objects. Nevertheless, this problem
can occur and we consider it as a special case of
failure.

An idea to solve this problem is to split some
activities, which have been previously grouped, into
two or several activities in order to transform some
COO-serializable sub-histories into CS-serializable
histories. This principle reuses the model of Split-
Transactions [16].

4.3 Putting it into practice

Our first application is Software Engineering. In
fact our initial problem was to support coopera-
tion of software developers [9]. The second appli-
cation is Concurrent Engineering: the objective is
to experiment our algorithm outside the context of
software engineering and in the context of a fed-
eration of object bases rather than one distributed
repository.

A Software engineering Environment We
have developed a software engineering environment
which favorizes interactions in the context of soft-
ware development. This first prototype (150 000
loc) implements the COQO protocol on top of an
object oriented database (P-RooT which extends a
PCTE based environment with object orientation).

During this work, we studied the means to tune
our algorithm to fit different needs [10]. Tuning is
achieved, on the one hand, by plugging different se-
mantic rules on the core syntactic protocol as intro-
duced above, and on the other hand by plugging a
locking mechanism and locks models to restrict one

more time the set of acceptable executions. Espe-
cially, this allows to impose isolation between two
processes if requested (a serializable execution is
COO-serializable). We studied also the way to in-
tegrate different tuned protocols in a hierarchical
way in order to fit the hierarchical organization of
software processes. This work demonstrates the ap-
plicability of our approach in large software devel-
opment applications, and more generally, we be-
lieve, in many real design applications.

A Concurrent Engineering Design Applica-
tion A second prototype is being designed in the
context of Concurrent Engineering, with examples
taken in the domain of the architectural design
of large buildings. The development platform is
Corba + Java (JacORB [4]). The objective is to
experience our model in a context outside software
engineering and especially the domain of co-design
on the WEB. This introduces new problems like an
organization of processes following a network archi-
tecture and the ability for a process to be momen-
tarily disconnected from the network.

5 Conclusion and Perspec-
tives

As justified before, we believe that a concurrency
control approach better fits indirect cooperation
correctness than a concurrent engineering one (in
opposition to, as example [2]). In this context, our
approach to support cooperation is quite original:
when most models [15, 1, 22] found correctness on
classical serializability and uses some knowledge on
the process to relax serializability (figure 2, b), we
found correctness on a new criterion which defines
a large sphere of security and we use knowledge to
restrict this sphere of security (figure 2, a). The cri-
terion which is the closest to our, because it allows
a transaction to read uncommitted data from an-
other, and so to import and export inconsistency, is
Epsilon-serializability [19, 17]. There, correctness is
based on bounding the amount of imported and ex-
ported inconsistencies. OQur approach is different in
the sense that although we allow the import/export
of inconsistency, we require convergence and final
consistency.

Our work is also related to version and config-

12

uration management [14]. In this context, we can
compare our approach, with the Make tool which
implements a restricted form of CS-serializability,
and more generally with the Long Transaction
Model [8]. There, software processes are encap-
sulated in transactions with an optimistic concur-
rency control protocol, but transactions cannot re-
lease partial results and thus cannot support coop-
erative executions. It can also be compared with
Adele [2] and EPOS [7], but in the first, cooper-
ation does not rely on general properties and the
second rather enters in the schema of figure 2 (b).

As introduced in section 4.2, a short term per-
spective of our work is to integrate the Split-
Transaction model [16] in our model in order to
allow an activity to delegate the evaluation of a
constraint to another activity. Splitting an activity
is also a means to suppress dependencies between
activities and to obtain group convergence. In this
way, it directly addresses the problem raised in sec-
tion 4.1.

We have experimented our approach in the soft-
ware engineering field, and we try to export it in a
more general context. This implies new problems
to be solved like the organization of processes in a
network architecture and the need for processes to
work momentarily in a disconnected way.

Another perspective of our work is to general-
ize our approach by studying new paradigms and
new criterions. Other cooperation patterns have
been introduced, as example mutual sessions, turn
taking, ...in the co-authoring domain [11] and we
are studying how we can support them. Other
criteria exist, as aforementioned in the domain of
databases, but also in this of distributed comput-
ing [20] and we are studying their relationships
with, on the one hand the needs in terms of co-
operation patterns, on the other hand with our cri-
terion.

References

[1] BARGHOUTI, N. Supporting Cooperation in
the MARVEL Process-Centered SDE. Pro-
ceedings of the Fifth ACM SIGSOFT Sympo-
sium on Software Development Environments
17, 5 (December 1992), 21-31.

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

BELKHATIR, N., AND ESTUBLIER, J.
ADELE-TEMPO: An Environment to Sup-
port Process Modelling and Enaction. In
Software Process Modelling and Technology,
A. Finkelstein, J. Kramer, and B. Nuseibeh,
Eds. Research Study Press, 1994.

BERNSTEIN, P., AND GooDMAN, N. Con-
currency Control in Distributed Database Sys-
tems. ACM Computing surveys 13, 2 (6 1981),
186-221.

BRrROSE, G. A Java Object Request Broker.
Tech. Rep. B 97-2, Université de Berlin, 1997.

CANALS, G., MoLL1, P., AND GODART, C.
Concurrency control for cooperating software
processes. In Proceedings of the 1996 Work-
shop on Advanced Transaction Models and Ar-
chitecture (ATMA’96) (Goa, India, 1996).

CHRYSANTHIS, P., AND RAMAMRITHAM, K.
ACTA: The SAGA Continues. In Database
transaction models for advanced applications,
A. Elmagarmid, Ed. Morgan Kauffman, 1992.

ConraDI, R., AND AL. EPOS: Object-
Oriented Cooperative Process Modelling. In
Software Process Modelling and Technology, A.
Finkelstein and J. Kramer and B. Nuseibeh,
Ed. Research Study Press, 1994.

FEILER, P., AND DOWNEY, G. Transaction-
Oriented Configuration Management: A Case
Study. Tech. Rep. CMU/SEI-90-TR-23 ESD-
90/TR-224, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Penn-
sylvania 15213, November 1990.

GopArr, C. COO: a Transaction Model
to support COOperating software develop-
ers COOQOrdination. In 4th European Software
Engineering Conference (ESECY), Garmisch,
LNCS 717 (1993).

Gobparr, C., CaNALs, G., CHAROY, F.
MotLri, P., AND SKAF, H. Designing and
Implementing COO: Design Process, Architec-
tural Style, Lessons Learned. In International
Conference on Software Engineering (ICSE18)
(1996). IEEE Press.

13

[11]

[12]

[13]

[17]

[18]

[19]

[20]

K. GRONBAEK, J. A. HEum, O. M., AND
SLoTH, L. Cooperative hypermedia systems:
A dexter based approach. Communications of
the ACM, 87(2) (February 1994), 65-74.

MARTIN, B., AND PEDERSEN, C. Long-
Lived Concurrent Activities. In Distributed
Object Management, Ozsu, Dayal, and Val-
duries, Eds. Morgan Kauffman, 1992.

MoLri, P. Environnements de Développement
Coopératifs. These en informatique, Université
de Nancy I — Centre de Recherche en Informa-
tique de Nancy, 1996.

MotrLi, P. COO-Transaction: Enhancing
Long Transaction Model with Cooperation.
In 7th Software Configuration Management
Workshop (SCM7), LNCS (Boston, USA,
May 1997).

NobpINE, M., RAMASWAMY, S., AND
ZDONIK, S. A Cooperative Transaction Model
for Design Databases. In Database transac-
tion models for advanced applications, A. El-
magarmid, Ed. Morgan Kauffman, 1992.

Pu, C., KAISER, G., AND HUTCHINSON, N.
Split Transactions for Open-Ended Activities.
In Proceedings of the 14th international con-
ference on VLDB (Los Angeles, September
1988), pp- 26-37.

Pu, C., AND LEFF, A. Replica control in dis-
tributed systems: An asynchronous approach.
In Proceedings of the 16th Annual ACM Con-
ference on the Management of Data (Denver,
May 1991), pp. 377-386.

RAMAMRITHAM, K., AND CHRYSANTHIS, P.
In Search of Acceptability Criteria: Database
Consistency Requirements and Transaction
Correctness Properties. In Distributed Ob-
ject Management, Ozsu, Dayal, and Valduriez,
Eds. Morgan Kauffman, 1993.

RamamrITHAM, K., AND Pu, C. A For-
mal Characterization of Epsilon Serialisability.
IEEE Transactions on Knowledge and Data
Engineering 7, 6 (December 1995), 997-1007.

RAYNAL, M., AND Mi1zuNoO, M. How to find
his way in the jungle of consistency criteria for

distributed objects memories. In Proceedings
of the 4th workshop on Future Trends of Com-
puting Systems (1993).

Skar, H., CHAROY, F., AND GoODART, C.
A Hybrid Approach to Maintain Consistency
of Cooperative Software Development Activ-
ities. In The Ninth International Conference
on Software Engineering and Knowledge En-
gineering, SEKE’97 (Madrid, 1997).

WACHTER, H., AND REUTER, A. The Con-
Tract Model. In Database Transaction Mod-
els for Advanced Applications, A. Elmagarmid,
Ed. Morgan Kauffmann, 1992, ch. 7, pp. 219-
258.

14

6

6.1

Annexs

ACTA Definitions

See [18] for more complete definitions.

1.

A transaction accesses and updates objects by applying operations to objects. An operation returns
a value and produces a state. If s is a state of the object base, return(s, p) returns the value of the
object after applying p in state s. state(s,p) returns the state after the execution of p in the state
S.

. Calling an operation p applied to object ob in the transaction ¢ is an event noted p¢[ob]. The effect

of an operation is not immediately persistent. It must be explicitly committed by the operation
Commit. Tt can be explicitly aborted by the operation Abort. An operation which is neither
committed nor aborted is said InProgress

. Pt;[0b] = qy;[0b] is true if the event py,[ob] precedes py;[ob].

. An history H(? of operations applied to the same object from a state s is the functional composition

of these operations H(°®) = p; o py o ... 0 p, with p;,[0b] — py, +1/0b]

. Two operations are in conflict from a state H(®) if:

(state(H(Ob) op, q) ;ﬁ State(H(Ob) o (Q:p)))v
(return(H(Ob), q) ;é State(H(Ob) o (pa q)))v
(return(H*", p) # State(H*") o (¢,p))

. return_value_dep(p, q) is true if, V¢, t', the result of gy [ob] depends on the result of p[ob].

. SE; contains the set of significant events of transactions,

IE; contains the set of events which can initiate a transaction
TE; contains the set of events which can terminate a transaction

15

6.2 CS-serializability axioms

W N

N N AN AN AN /N /N
(=2} >
N — ' ~—— "

EN{

DEFINITION 4 (CS-SERIALIZABILITY AXIOMS)

SE; = {Begin, Commit, Abort}
IE; = {Begin}
TE, = {Commit, Abort}
t satisfies the fundamental Axioms 1 a 4
View; = Hy
ConflictSety = {py[ob]|InProgress(py [0b])}
(Commit, € H) = Yob,VQ¢,3q € Q;
(Vq' € Q+,q" # q,qi[0b] — g¢[ob]) A (Commit,[g:[ob]] € H)
(Commiity[q[ob]] € H) = Ip (py [0b] = g¢[ob] A return_value_dep(p, q))

) = (Commit, [py [ob]]) € H

9) (Commit, € H) = —(tC,t)

Job, 3p, q ((Abort,[p:[ob]] € H) A (return_value_dep(p, q) A pi[ob] — g, [ob]))

(10)

= (Abort, [g:[ob]] € H)

(11) Job Ip (Abort:[pob]] € H) = (Abort, € H)

(12) (Aborty € H) = YobVp((pe[ob] € H) = Abort[p[ob]] € H)

Axiom 1 CS-activities are associates with the three significant events: Begin, Commit and Abort.

Axiom 2 Begin is the initiation event for CS-activities.

Axiom 3 Commit and Abort events are the termination events.

Axiom 4 CS-activities satisfy fundamental axioms [6][ACTA]: a transaction cannot be initiated by sev-
eral events, a transaction cannot terminate it has not been initiated, a transaction cannot be
terminated by two events, only InProgress operations can operate objects

Axiom 5 An activity sees the current state of objects in the database.

Axiom 6 Conflicts have to be considered against all in-progress operations performed by different activ-
ities.

Axiom 7 Last occurrence of a series of identical operations are committed. (see Last Occurrence axiom
page 5).

Axiom 8 A committed operation must depend from a committed operation(see Commit Propagation
axiom page 6).

Axiom 9 An activity can only commit if it is not part of a cycle of C.s developed through the invocation
of conflicting operations. (see CS-serializability page 6).

Axiom 10 If an operation is aborted, then a dependent operation is aborted too.
Axiom 11 If an operation is aborted, then the responsible transaction is aborted too.
Axiom 12 If activities abort then all operations belonging to this transaction are aborted.

16

6.3 COO-serializability Axioms

DEFINITION 5 (COO-SERIALIZABILITY AXIOMS)
Let T an activity set. t € T,VT, C T.

1) SE; = {Begin, Commit, Abort}

(2) IE, = {Begin}

(3) TE; = {Commit, Abort}

(4) t satisfies the fundamental Axioms 1 & 4

(5) View; = Hyy

(6) Vii,t; € To,t; # t;,t:SCDt; A t;ADt;

(7 ConflictSet; = {py[ob] |t € T. = t' € T., InProgress(py [ob])}
(8) (Commit, € H) = Yob,VQ¢,q € Q:

(V¢' € Qi,q' # ¢, g;[0b] = qi[ob]) A (Commity[q;[ob]] € H)
(9) (Commit[q; [ob]J € H) = 3p (p, [ob] = g+[0b] A return_value_dep(p, q))
= (Commit, [p,[ob]]) € H
(Commit, e HYANt € T, =
VobVq(State(H () # State(HY) o q)) A (commiity,[q;,[0b]] € H) At; #t =

(10) Jp (return_value_dep(q,p) A (State(H©)) =
State(H (Y o p)) A (¢, [0b] = pi[ob]) A commity[p[ob]] € H)

(11) (Commity € H) = ~(tC,,t)

(12) Job Ip (Abort[ps[ob]] € H) = (Abort; € H)

(13) Job, p, g ((Abort,[p:[ob]] € H) A (return_value_dep(p, q) A p:[ob] = g, [0b]))
= (Aborty [g:[ob]] € H)

(14) (Abort, € H) = VobVp((pe[ob] € H) = Abort[p[ob]] € H)

Coo-Activities enhance CS-activities with the notion of group of activities like in [12][Cooperative Seri-
alizability].

e Axioms 1-5 are identical to CS-activities.

e Conflicts have to be considered against all in-progress operations performed by activities that not
belong to the transaction group.

e See Last Occurrence axiom page 5.
e See Commit Propagation axiom page 6.

e Axiom 10 states that activities belonging to the same group must converge to unique final state.
(Group Convergence Axiom page 8).

e Axiom 11 states that an activity can only commit if it is not part of a cycle of C.,, developed
through the invocation of conflicting operations. (see COO-serializability page 7).

o Axiom 12-14 are identical to CS-activities.

17

