
Cooperation Services for Widely Distributed Applications

Manuel Munier, Claude Godart

UMR no7503 LORIA - Université Henri Poincar´e
Campus Scientifique, BP 239,

54506 Vandœuvre-l`es-Nancy Cedex - FRANCE
E-mail:{munier,godart }@loria.fr

Abstract

Due to the popularization of Internet, widely distributed
cooperative applications are expected to become common-
place on the Web. Virtual enterprises and mobile computing
are good examples of such distributed applications. They
both involve several actors connected together and needing
to co-operate by sharing some (possibly unstable) data. To
ensure consistency of shared data, traditional distributed
systems are based on a client/server architecture. How-
ever, this implies that client activities have to be connected
to the server continuously.

This paper describes our approach to build distributed
cooperative applications using a peer-to-peer architecture.
An activity is viewed as a self contained component which
cooperates with other components by exchanging, during
its execution, some results. To ensure consistency of shared
data, two activities have to negotiate a cooperation pattern
first, which purpose is to control subsequent exchanges of
these data between these two activities.

1. Introduction

Due to the popularization of Internet, widely distributed
cooperative applications are expected to become common-
place on the Web. Indeed, organisations whose staff work
at widely distributed sites invest much time and incur large
travel expenses to work as a team, exchange information
and ensure coordination among their various sites. This
effort can be considerably reduced by using a fairly sophis-
ticated mechanism of communication and coordination. As
the various activities of such a distributed system can share
some (possibly unstable) data, we need to make sure that
whenever there are changes, we ensure that people get no-
tified whenever they should have been notified, and that the
efforts of various people on the project are coordinated well
enough to absorb the impacts of the changes.

However, ensuring the safety of data exchanges between
cooperative applications should not restrict their autonomy,
neither for data access (by using a centralized server to store
all the data of the system) nor for coordination of the inter-
actions (by assigning the control of all the exchanges to a
single server). This means that we don’t want to force co-
operative applications to be connected to some server at all
times. Obviously, this is the main requirement in the case of
applications running on mobile terminals or desktop com-
puters connected to the network by lazy connections (slow
connections or even connected occasionally via modem).

Virtual enterprises are another kind of widely distributed
cooperative applications. The concept of virtual enterprise
depicts the idea that many applications are the result of
cooperation between several actors, playing different roles
and building a temporary relational system structured by a
common objective and for the duration of a project. Build-
ing trade is a good example of such short-life enterprises:
it involves several partners (architect, research consultant,
control office, building firm, electrician, carpenter, ...) who
constitute an enterprise for the duration of the building con-
struction. Virtual enterprises require new technologies to
organise their short duration networks. As partners can be
small enterprises and have a small computer infrastructure,
technologies must be easy to understand and to use, and
must not disrupt the habits of users. Particularly, this means
that it is not acceptable to force them to move all the data
on which they work on a centralized server, to which they
have to be connected expensively at all times. Moreover,
many of the partners will not agree their (possibly private)
data will be managed by somebody else !

With these requirements in mind, we have developed an
approach which allows to develop cooperative applications
by assembling basic cooperation patterns. To assume ac-
ceptance of assembling, cooperation patterns can be negoti-
ated between partners. To assume safety of assembling and
execution, each concurrent engineering activity executes as



a transaction, i.e. in a frame which allows to assert safety
properties on executions.

This paper describes our approach and presents some
preliminary results. In a first time, section 2 explains why
we chose to develop a peer-to-peer architecture. Section 3
presents our cooperation model to define and to manage
cooperation patterns. Then, section 4 gives the principle of
our implementation of this cooperation model as CORBA
services. Finally, we conclude by generalizing the princi-
ples developed previously to better cover the characteristics
of a lot of concurrent engineering applications.

2. Peer-to-Peer vs Client/Server Architecture

Most distributed systems are based on a client/server ar-
chitecture in which, though single activities may execute at
geographically distributed nodes, the knowledge about the
processes which execute is kept in a centralized database
at the server level. This centralization makes it easier to
synchronize and monitor the overall execution as all de-
cisions are taken on this server which has a global view
of the whole system. With this architecture, configuration
management tools like Continuus [9], ClearCase [1, 2],
Adèle [4], or database systems using a transactional ap-
proach [6, 12, 3, 8] can be used to coordinate updates per-
formed by activities.

Using a client/server architecture, a distributed system
is viewed as a set of clients (activities) connected to a
server (figure 2.1-a). Even if we use caching or replication
features to store some data on activities, data exchanges be-
tween these activities always have to go through the server.
This does not correspond to the nature of the applications
that we consider in which:

• Each actor already has his own environment and
doesn’t want to change his habits. Moreover, he has
to be free to work as he wants in his environment.

• Due to the expensiveness of network connections, ac-
tors are generally disconnected when they work, but
this sould not prevent them to work.

• In large projects, nobody possesses the entire knowl-
edge of the system. Therefore, it is extremely diffi-
cult and often impossible to determine, in a central-
ized way, all the possible impacts of a given change.

To support these requirements, our approach is based on
a peer-to-peer architecture (figure 2.1-b). That is, each ac-
tivity is both aclientof and aserverfor other activities. The
terms “client” and “server” are merely roles that are filled
on a per-request basis. Very often, a client for one request

Figure 2.1Centralized Control vs Distributed Control

b1 b2

b4b3

A1

A3

A4

A2

A3

A1

b1

b3

A4

b4

b2

A2

(a) (b)

Ax bxActivity Local database
for the activity

Interaction
control

is the server for another. Thus, an activity is viewed as a
self contained component that cooperates with other com-
ponents by exchanging, during its execution, some (possi-
bly preliminary) results. By self contained we mean that
an activity should manage itself its own data, both for data
storage and interaction control. Doing this, each activity
is responsible for its data exchanges with others activities.
So, unlike configuration management tools or transactional
systems, we avoid activity denpendency towards any kind
of server, neither for data access nor for interaction control.

In order to coordinate data exchanges between activities,
we need to define cooperation protocols. Such a protocol is
a set of rules that two activities have to check if they want
to share data consistently. Here are some rule examples
(section 3.2 will go further into this notion of cooperation
protocol):

• no lost-update: A result produced by an activity can
not be overwritten by another activity before it is read
by any other activity.

• no dirty-read : An activity can not publish a result
produced from outdated parameters.

• exchanges orientation: If exchanges are oriented
from the activityA to the activityB, B can read val-
ues produced byA, butA is not allowed to read values
produced byB.

• re-read of the final value: If an activity A reads a
preliminary result produced by an activityB, thenA
has to read the final value produced byB before com-
mit time.

• notification on update: When an activity produces a
new result for some data, it notifies all the activities
with which it shares this data. This rule is used for
group awareness rather than access control.



The main idea is that when an activity want to commu-
nicate with another one, these activities begin by negotiat-
ing a cooperation protocol. This negotiation will ensure, at
least, that the protocol one activity wants to use is known
by the other. Thus each activity will have a cooperation ta-
ble which purpose will be to show which protocol to use to
control the exchanges of a given data with a given activity.

Then, the system will ensure that all exchanges between
these two activities will respect the negotiated protocol,
while keeping them independent of one another: in case
of protocol violation, only the faulty exchange is refused.
From the user point of view, the main advantage of our
approach is that we define cooperation protocols to coor-
dinate data exchanges between activities and not to control
the activities themselves. Therefore, an activity is largely
independent of other activities for the task it performs. This
means that each actor of the system is free to work like he
wants, as long as his data exchanges with other actors are
correct.

3. Cooperation Model

3.1. Cooperation by Intermediate Result Exchange

Our objective is to define a framework to build dis-
tributed systems by assembling several autonomous activ-
ities. These activities will cooperate by exchanging some
data during their execution. These data are called inter-
mediate results or inter values. An intermediate value is
a value of a data which is subject to further modifications
by the same activity and is generally inconsistent. For in-
stance, in a software development team, somebody can start
to develop an application using a preliminary version of a
library. By preliminary version we mean that some func-
tions of the library can be missing or untested. So this
version of the library is now inconsistent with regard to
its specification. However it is considered as being poten-
tially interesting for other activities. In our example, it is
not necessary to wait for the validated and final version of
the library before to start to develop the application. The
concept of intermediate value allow to break the isolation
between activities during their execution.

If it is important to preserve consistency of data, this
must not prevent users of doing work. For that, intermedi-
ate results allow users to work as they like, the only obliga-
tion being that final results of their activities must be consis-
tent. In other words, an activity lives with inconsistencies
but has to reach a consistent state before it completes. To
ensure consistency of data shared by two activities, we de-
fine a set of rules that all their exchanges have to respect.
Such a set of rules is called a cooperation protocol.

3.2. Coordination/Cooperation Control

As depicted on figure 2.1-b, a distributed system is a
network in which a node is an activity and an edge is a
basic cooperation protocol (called cooperation pattern) that
controls data exchanges betwen the two related activities.
But it is not sufficient to define patterns; we have to be able
to manage interactions between several patterns too. Indeed
an activity could share the same data with several activities
using various patterns.

3.2.1. Basic cooperation patterns

The coordination of the exchanges between two activities
is performed by a cooperation pattern. We already defined
three basic patterns of cooperation [10, 11]:

• the client/server pattern: one actor (the client) can
work on preliminary versions of a data produced by
another actor (the server). The only compulsory rules
are: the server must produce the final version of each
data it has produced in a preliminary version, an d the
client must take into account the last version produced
by the server for each data it has read in a preliminary
version.

This pattern permits some cooperative work which
enhances productivity by allowing to start the client
activity before the end of the server activity while en-
suring the client will read the final version of the data
produced by the server.

• thecooperative writepattern: two actors can modify
at the “same time” the same data. Actually, each of
them modifies the copy of this document he owns in
its local database. They have to follow some rules: to
be aware of each other work (by exchanging prelimi-
nary versions of this data) and to converge towards a
same view of this data (i.e. they have to agree on the
same final version of this data).

• thewriter/reviewer pattern: this third form of coop-
eration corresponds to the case in which an actor pro-
duces a data under the control of another. This pattern
ensures that the final data produced by the server will
be reviewed by the reviewer, and that the server will
read the last version of the data produced by the re-
viewer. Thus both the writer and the reviewer have to
agree to the same final versions of data they shared.

We can note that these cooperation patterns only control
data exchanges between activities, and not the individual
work of activities. As a matter of fact, when two activities
want to exchange a data, each of them checks the pattern
they negotiated according to its current state (i.e. according



to the state of data it shares with others activities). If at least
one of them detects a protocol violation, the exchange does
not occur. Therefore, each activity of the system is largely
independant of the others, as long as its data exchanges with
other activities are correct with respect to the negotiated
cooperation protocols.

3.2.2. Interactions between patterns

When two activities need to cooperate, they negotiate a co-
operation pattern to control their data exchanges between
their respective local databases. So, an activity can share
various data with many other activities using a different
pattern with each of them. Thus each activity build its own
cooperation table which purpose is to show which cooper-
ation pattern to use to exchange a given data with a given
activity. Such a cooperation table is depicted in figure 3.1.

Figure 3.1Cooperation Table

activity remote activity shared data pattern role
myself lib. provider library client/server client
myself co-developer source code cooperative write ∼
myself doc. writer source code client/server server
myself doc. writer documentation writer/reviewer reviewer
myself doc. writer doc. advice writer/reviewer writer

Consequently, a same data can be shared in many ways
(i.e. using various patterns). So, it is at the data level that
patterns will interact and possibly conflict.

By conflict we mean that a given transfer operation be-
tween two activities could be allowed by one cooperation
pattern whereas it could be prohibited by another one. In
concrete terms, we use a transactional approach1 to imple-
ment protocols, and each cooperation pattern is based on a
“correctness criterion” which characterizes the set of cor-
rect interactions between two activities. To specify it, the
principle is to store the sequence of some specific events
(transfer operations between the two activities), i.e. to build
an history of the execution, and to verify that this history
respects some well defined properties. Thus, a conflict be-
tween two patterns occurs when an execution is correct for
one correctness criterion but not for the other. To detect
such conflicts between patterns, an activity can proceed in
two ways:

1In [7, 11] we already used such an approach to define a new correct-
ness criterion : theCOO-serializability. Then we described a protocol
to maintain this criterion in a client/server architecture (i.e. the coordi-
nation of the activities is ensured by a centralized persistent store). As
theCOO-serializability ensures the basic properties common to the three
cooperations patterns (client/server, cooperative write, writer/reviewer),
this protocol allows the assembling of these three patterns within a single
framework.

• statically (i.e. before the execution): as described
above, if two activities want to share data, they have
to negotiate a cooperation pattern first. If an activity
chooses to detect conflicts statically, it has to be able
to test if the specifications (i.e. the correctness cri-
teria) of two patterns are “compatible”. This kind of
problem can not only be complex, but it can also re-
strict the cooperation between activities. For instance,
two activities can fail to negotiate a pattern because
one of them already uses another pattern that could,
in some cases, conflict with all patterns these activi-
ties agree for the negotiation.

For instance, as defined in figure 3.1, the activity
myself has to review the documentation and to pro-
duce a documentation advice. Now, let suppose it
want to do this work with somebody else. For that,
they could want to share the documentation using a
cooperative write pattern to be able to annotate it.
However, this creates a conflict because, as a re-
viewer, the activitymyself is not allowed to modify
it (with regard to the correctness criterion defining the
writer/reviewer pattern).

• dynamically (i.e. at run time): during the negotia-
tion, activities do not care for compatibility between
patterns. Conflicts will be detected when they occur
effectively, i.e. when an activity try to exchange some
data with another activity. Let an activityA share the
same data with various activitiesB1..Bn using the co-
operation patternsP1..Pn. It can proceed in two way:

– each exchange betweenA andBi is controlled
by all the patternsP1..Pn. A conflict will be im-
mediately detected and the faulty exchange will
be refused. In such a way we always ensure data
integrity. But if such an exchange initiated by
Bi is refused, this means the activityBi could
be disturbed by a cooperation pattern different
from the one negociated withA (i.e. the pattern
Pi).

– an exchange betweenA andBi is controlled
only by the patternPi. So exchanges between
A andBi strictly respect the cooperation pattern
negotiated betweenA andBi . If such an ex-
change creates a conflict for a patternPj (j 6= i)
between activitiesA andBj , this conflict will
be detected when the activityA will try a new
exchange with the activityBj . As we can see,
the activityA is the only one to be aware of this
conflict.

Obviously, the third solution is the best in the case of
virtual enterprises or mobile computing, as a conflict has to



be resolved by the activity on which it occurs.
Neverthless, this solution can lead to some deadlocks.

For instance, an activity cooperating with several other ac-
tivities, possibly using various patterns, could end in a sit-
uation in which all the exchanges it will try will break at
least one pattern and so will be refused. Thus we should
provide not only tools to define cooperation patterns and to
detect conflicts between these patterns, but mecanisms for
conflict management too:

• conflict notification: first, the user (i.e. the actor driv-
ing the activity) should be noticed when a conflict oc-
curs. However, the system should not only notify that
an exchange operation was refused, but should also
detail the reasons why it was refused.

• pattern renegotiation: such a deadlock situation
could be due to the pattern negotiated between two
activities and defined too strictly. So activities should
be able to renegotiate this pattern.

• version management: another complementary solu-
tion is to be able to “undo” some work. As for con-
figuration management tools, this means that an activ-
ity can develop, in its local database, its own version
branche for data it uses. At the end of this activity,
it should be able to produce its results according to
any versions of these data. For instance, the activity
could come back to the data version it imported. This
means that the modifications this activity did on these
data will not be visible to other activities.

3.2.3. Formal Description

As above-mentioned, we use a transactional approach. This
means that our cooperation model can be considered to be a
flexible transaction model, i.e. cooperating activities can be
seen as being concurrent transactions. But unlike classical
ACID2 transactions, these activities (eventually distributed
over a Wide Area Network) can exchange intermediate re-
sults. So we break down the isolation property.

To synthesize our model we use the ACTA transaction
framework[8]. ACTA was designed to specify and reason
about the nature of interactions between extended trans-
actions in a particular model. ACTA is a first-order logic
based formalism which allows to specify the effects of a
transaction on other transactions (inter-transactions depen-
dencies) and also to specify their effect on objects (visibility
and conflicts between operations on objects) by means of
constraints on histories.

2ACID stands for Atomic, Consistent, Isolated, Durable

The axiomatic definition of a transaction model aims to
determine if a new event3 can be invoked. Especially, the
preconditions of the event derived from the axiomatic defi-
nition of its invoking transaction are evaluated with respect
to the current historyHct. If its preconditions are satisfied,
the new event is invoked and appended to theHct reflecting
its occurrence.

Using this formalism we define each cooperation proto-
col (i.e. a set of rules) by preconditions on events invoked
by activities (begin/commit/abort of an activity, transfer
operations,. . .). These preconditions are first-order logic
predicates which are evaluated on the (local) current histo-
ries of involved activities.

Obviously, one of our main objectives is to ensure that if
a property is satisfied with respect to local histories of activ-
ities, then the same property is satisfied with respect to the
global history of the whole system. From a transactional
point of view this means that we want to distribute correct-
ness criteria, i.e. to ensure classical global properties (like
the serializability) using local controls on data exchanges
between activities in a peer-to-peer architecture.

3.3. Cooperation Architecture

Now, we present the architecture we designed tocoor-
dinate, using variouscooperation patterns, dataexchanges
between widely distributed activities. We must define how
an activity stores its data locally, what is a cooperation pat-
tern, and how activities control data exchanges using these
patterns.

Remember that we don’t want to disrupt the habits of ac-
tors. From the user point of view, this means that we should
be able to work on shared data using legacy tools, which
generally can access to files and directories only. So we
split the local repository of an activity in two parts: a pub-
lic one, calledcooperation space, in which the activity will
store versions and configurations of data it uses, and a pri-
vate which is theworkspaceitself (i.e. where legacy tools
will store their files). So, when a user imports a document
from another activity, this document is stored in his coop-
eration space. To be able to access it through his legacy
tools, he must check out this document to his workspace
to obtain a file his applications can read and write. When
he want to publish his work (possibly as intermediate re-
sult), he checks in the file to the cooperation space. This
operation updates the document in his cooperation space,
i.e. creates a new version of this document which is now
available to other activities.

3An event is either an invocation of an operation on an object (ob-
ject event) or a transaction management primitive (significant event) like
Begin , Commit or Abort .



Coordinator

Cooperation
Space

Protocol

Activity A2

Network

API

Workspace

- Files
- Database

(JDBC,NFS,...)

Legacy Tools
(autocad, word,...)

Actor

Activity A1 Activity A3

A2 A1 client/server

A2 A3 cooperative write

.

.

.

.

.

.

.

.

.

Cooperation Table for A2

library

source
code

.

.

.

this
activity

remote
activity

shared
data

cooperation protocol

As depicted in figure 3.2, each activity is made of four
main parts:

• a Cooperation Spacewhich is the local repository
of the activity. It is in charge of creating/deleting re-
sources, checking in/out data between the cooperation
space and the workspace, and managing version and
configuration for local resources.

• a Workspace which shows resources as files and
repositories (for instance), so actors can use their
legacy applications.

• aProtocol which is based on the cooperation table of
the activity. It ensures that a sequence of exchanges
between two activities is correct (according to the co-
operation pattern they negotiated).

• aCoordinator which is the activity interface for other
activities. Thus all exchanges between activities have
to be done through their coordinators. This prevents
activities to perform, directly between their coopera-
tion spaces, data exchanges which are not controled
by any cooperation pattern. Moreover, it allows the
cooperation space and the protocol to be defined in-
dependently.

As explained in section 3.2.3, a cooperation pattern is
defined as a set of properties that have to be repected by

data exchanges. These properties are used by the coordina-
tor (cf figure 3.2) as pre-conditions for data exchange op-
erations. So, any transfer operation which fails to respect
one of its pre-conditions is refused by the coordinator. This
means that a data exchange between two activities can oc-
cur only if the two coordinators allow it. Thus, each activ-
ity is completely responsible for the consistency of data it
owns in its cooperation space.

The autonomy of activities is not the only advantage
of such an architecture: another key feature is the scal-
ablity. Therefore, an activityA only knows the activities
with which it is directly connected and objects it shares
with these activities. It needs only a local view of the sys-
tem. Thus we can add as many activities and objects as
we want, if they don’t concern the activityA, this activity
will not be disturbed (from a performance point of view)
by these new activities and objects.

4. Implementation

An important characteristic of widely distributed sys-
tems, like virtual enterprises or mobile computing, is that
they are heterogeneous. For example, in the case of a virtual
enterprise, some partners could use mainframes or UNIX
workstations while others use desktop computers or even



laptops. In recognition of these problems, the Object Man-
agement Group (OMG) defined theObject Management
Architecture(OMA), whose key component is theCom-
mon Object Request Broker Architecture(CORBA) spec-
ification [13]. In the OMA Object Model, an object is
an encapsulated entity with a distinct immutable identity
whose services can be accessed only through well-defined
interfaces. TheObject Request Broker(ORB) component
is responsible for communications between clients and ob-
jects. Thus, the implementation and location of each ob-
ject are hidden from the requesting client. Unlike typical
distributed software systems, which are tied closely to un-
derlying networking protocols ans mechanisms, CORBA-
based applications are abstracted away from the networking
details and thus can be used in a variety of environments.

Another key feature is that CORBA itself and applica-
tion built on top of it are best designed using object-oriented
software development principles. For example, the fact that
object interfaces must be defined in OMG IDL helps devel-
opers think about their applications in term of interacting
reusable components.

Thus, to implement our cooperation model, we chose to
conform to CORBA, which has became a standard in the
distributed object community. Indeed, our objective is to
provide a toolkit to build distributed cooperative applica-
tions in such distributed heterogeneous environment. We
don’t want to develop yet another proprietary system, but
to define a set of cooperation services instead. In other
words, we intend to describe what are the basic compo-
nents needed to build distributed cooperative applications
on top of CORBA. That way, our services can use and can
be used by other CORBA services. So they easily can be
integrated into existing CORBA distributed systems, which
is a key feature of our framework for cooperation support.

As detailed in section 3.3, we identified four main ser-
vices: a cooperation space service (to manage the local
database of an activity), a workspace service (to allow
legacy applications to access shared data as files or directo-
ries), a protocol service (to set the cooperation pattern to be
used to cooperate with a given activity), and a coordination
service (to ensure that data exchanges between activities are
controled by the right pattern). Obviously, the core of our
framework is the service related to protocol management.
It provides the following functionalities:

• definition of basic cooperation patterns

• pattern negotiation between activities

• management of the cooperation table

• control of data exchanges

• detection and notification of conflicts; this includes
the ability to find and explain what caused a conflict

As explained in section 3.2.2, in order to ensure that its
data exchanges with other activities respect the negotiated
cooperation patterns, each activity logs all these transfer
operations into its local history. Moreover, a cooperation
pattern is define by a set of properties on this history. To
check the correctness of a sequence of operations (the his-
tory) according to a given property, we chose to implement
such a property with a Prolog predicate defined on a list
of operations. Thus, a cooperation pattern is mapped to a
set of Prolog clauses. Even if this solution is not the best
efficient way, this allows us to have an implementation of
the cooperation patterns close to the correctness criteria.

5. Example

To illustrate our approach, we reuse the example devel-
opped in [5]. It consists in designing a one-storey apartment
containing a living room with a glass wall. Four kinds of
designers cooperate to achieve this work:

Figure 5.1Document Exchanges and Cooperation Patterns

town
planner

architect

structural
engineer

HVAC
engineer

plan

advice

plan

plan

cooperative
write

client/
server

writer/
reviewer

• the architect: his activity is to design and represent
the apartment spatial organization with its walls, win-
dows,... To construct his plan, the architect only takes
care of volumes, spaces and luminosity of the apart-
ment.

• thestructural engineer: his activity consists in spec-
ifying the structural elements of the apartment. Such
elements (cross walls, beams,...) will be chosen to
respect, as far as possible, the choices made by the ar-
chitect and the overall harmony of the building. Such
an activity leads to modify the plan provided by the
architect.

• the HVAC engineer: he will intervene to change the
glass wall according to the climate and the apartment
exposure.

• the town planner: he controls the architect’s plan and
gives advice in return. The architect has to consider



this advice and possibly to modify his plan according
to it. The town planner has to validate the final plan.
The town planner only takes care of town planning
aspects of the apartment.

These activities operate on various documents they will
share: the plan and the advice of the town planner. All
these exchanges between activities will not be driven by
the same set of rules. If in some cases we will encourage
activities to cooperate, in some others we will put some
constraints. For example, the architect and the town planner
share both the plan and the advice, but in a read-only mode.
It is obvious that the architect will not be allowed to modify
the advice delivered by the town planner, and vice-versa.
Cooperation patterns used to control exchanges between
the various activities are presented below and illustrated in
figure 5.1:

• client/server: the architect (the server) provides sev-
eral versions of the plan to the HVAC engineer (the
client). Thus exchanges occur from the architect to
the HVAC engineer.

• writer/reviewer: the town planner reads (but does not
modify) the plan provided by the architect. Then he
transmits his advice to the architect that reads (but
does not modify) this document and modifies his plan
according to it.

• cooperative write: both the architect and the structural
engineer work on the same plan. During the design
activity, they will possibly modify it at the same time,
so they will have to merge changes made by the other
in order to produce only one version of the plan on
which they will agree at the end of the acitivity.

Here is an execution example where the town planner
imports the plan drawn by the architect and reviews it to
produce its advice (cf figure 5.2).

1. When two activities want to share some data, they first
negotiate a cooperation pattern to coordinate their ex-
changes.

2. At the end of the negotiation, each activity updates
its own cooperation table with the negotiated cooper-
ation pattern.

3. Now, let us suppose that the town planner wants to
import the current version of the plan drawn by the ar-
chitect. Before to send the request to the architect, the
coordinator of the town planner checks that its own
protocol allows this operation.

4. Then it asks the coordinator of the architect to send to
it the current version of the plan.

Figure 5.2Protocol Negotiation & Import of the Plan

Coordinator

N

e

t

w

o

r

k

ProtocolCooperation
Space

Workspace Coordinator Protocol Cooperation
Space

Workspace
protocol

negotiationcooperation
table update

cooperation
table update

ask for the plan
check

ask for the plan

plan
plan

check

plan storage

N
eg

ot
ia

tio
n

Im
po

rt
 o

f t
he

 p
la

n

2

1

2

3

4
5

6

7

Town Planner Architect

W
or

k 
on

 th
e 

pl
an

8

9

10

check-out
the plan

use of legacy tools
to read the plan and
to write the advice

publication
of the advice

5. When the coordinator of the architect receives the re-
quest, it checks it can give the plan to the town plan-
ner.

6. Then it retrieves the plan from its cooperation space
and sends it to the town planner.

7. When the coordinator of the town planner receives the
plan, it stores it in its cooperation space.

8. Now the town planner can check the plan out of his
cooperation space (i.e. the objectplan in his local
database) to get a regular file (in the DXF format for
instance).

9. Then the town planner works in his workspace using
his legacy tools, i.e. he can use his favorite CAD soft-
ware to read the plan and his favorite text editor to
write his advice.

10. Later, the town planner publishes4 his advice, i.e.
he converts the file into an object in his cooperation
space. Now, the architect can import this advice using
the import process described above (steps 3 to 7).

We can note that neither the architect nor the town plan-
ner trusts the other. Each of them systematically asks its
own protocol to know if the requested exchange is allowed
with regard to its negotiated cooperation patterns.

4The town planner can perform this operation during the review pro-
cess, and thus can make visible preliminary versions of his advice.



To conclude this example, we show on figure 5.3 coop-
eration tables built for each activity of this example.

Figure 5.3Cooperation Tables for the Example

activity remote activity data pattern role
architect struct. engineer plan cooperative write ∼
architect HVAC engineer plan client/server server
architect town planner plan writer/reviewer writer
architect town planner advice writer/reviewer reviewer

activity remote activity data pattern role
town planner architect plan writer/reviewer reviewer
town planner architect advice writer/reviewer writer

activity remote activity data pattern role
struct. engineer architect plan cooperative write ∼

activity remote activity data pattern role
HVAC engineer architect plan client/server client

6. Conclusion

This paper has introduced our approach to build dis-
tributed cooperative applications. Whereas most distributed
systems on a client/server architecture, our approach uses a
peer-to-peer architecture in which an activity is viewed as a
self contained component that cooperates with other com-
ponents by exchanging, during its execution, some (possi-
bly preliminary) results. Before being allowed to exchange
some data, two activities have to negotiate a cooperation
pattern first. As an activity could share the same data with
several activities using various patterns, we have to deal
with interactions between cooperation patterns.

If this approach is ambitious and difficult to achieve
in its globality, our experience [7, 10, 11] demonstrates
that it is feasible with a limited set of cooperation pattern
(client/server, cooperative write, writer/reviewer). Our ob-
jective now is to extend this approach by incorporating new
cooperation behaviors, i.e. by defining new cooperation
patterns in order to better cover the characteristics of a lot
of concurrent engineering applications. The more difficult
problem we tackle is to find out new correctness properties
to validate the integration of the new patterns correspond-
ing to the new cooperation behaviors.

References

[1] Larry Allen, Gary Fernandez, Kenneth Kane, David
Leblang, Debra Minard, and John Posner. ClearCase
MultiSite: Supporting geographically-distributed
software development. In Jacky Estublier, editor,
Software Configuration Management: Selected Pa-
pers of the ICSE SCM-4 and SCM-5 Workshops,

number 1005 in Lecture Notes in Computer Science,
pages 194–214. Springer-Verlag, October 1995.

[2] Atria Software Inc. ClearCase product summary.
Technical report, Atria Software Inc., 24 Prime park
Way, Natick, Massachusetts 01760, 1994.

[3] Goodman N. Beeri C., Bernstein P.A. A model of
concurrency in nested transactions systems.Journal
of the ACM, 36(2):230–269, 1989.

[4] N. Belkhatir and J. Estublier. ADELE–TEMPO : An
Environment to Support Process Modelling and En-
action. In J. Kramer A. Finkelstein and B. Nuseibeh,
editors,Software Process Modelling and Technology.
Research Study Press, 1994.

[5] K. Benali, M. Munier, and C. Godart. Cooperative
models in co-design. InInternational Conference on
Agile Manufacturing (ICAM’98), Minneapolis, USA,
June 1998.

[6] P.A. Bernstein and N. Goodman. Concurrency Con-
trol in Distributed Database Systems.ACM Comput-
ing surveys, 13(2):186–221, 6 1981.

[7] G. Canals, P. Molli, and C. Godart. Concurrency
control for cooperating software processes. InPro-
ceedings of the 1996 Workshop on Advanced Trans-
action Models and Architecture (ATMA’96), Goa, In-
dia, 1996.

[8] P.K. Chrysanthis and K.Ramamritham. Synthesis of
Extended Transaction Models. 19(3):451–491, 1994.

[9] Continuus/CM. Change management for
software development. Technical report,
http://www.continuus.com/developers/developersACED.html.

[10] C. Godart, G. Canals, F. Charoy, P. Molli, and
H. Skaf. Designing and ImplementingCOO: De-
sign Process, Architectural Style, Lessons Learned.
In International Conference on Software Engineering
(ICSE18), 1996. IEEE Press.

[11] P. Molli. COO-Transaction: Enhancing Long Trans-
action Model with Cooperation. In7th Software Con-
figuration Management Workshop (SCM7), LNCS,
Boston, USA, May 1997.

[12] J. Elliot Moss.Nested Transactions: An Approach to
Reliable Distributed Computing,. PhD thesis, MIT,
1981.

[13] OMG. The Common Object Request Broker: Ar-
chitecture and Specification. Technical Report 2.0,
Object Management Group, 1995.


