
COOPERATION MODELS IN CO-DESIGN

Khalid Benali, Manuel Munier, Claude Godart
UMR n°7503 LORIA – Université Nancy 2 – Université Henri Poincaré

Campus Scientifique, BP 239,
54506 Vandœuvre-lès-Nancy Cedex - FRANCE

Tel: +33 (0)383.59.30.98 Fax: +33 (0)383.41.30.79 E-mail: benali@loria.fr

ABSTRACT

Due to the popularization of Internet, cooperative applications of project-enterprise type
are expected to become commonplace on the WEB. By project-enterprise, we understand short-
lived concurrent engineering enterprises which are created by aggregating several partners around a
project and for the duration of this project. They require new technologies to organize their short
duration networks. For this purpose, this paper introduces a flexible approach to build cooperation
support software by assembling basic generic cooperation bricks. It shows how such a
cooperation policy is implemented in a secure way thanks to a flexible transaction model. Our
approach is illustrated through an example taken in the AEC domain.

Key words: cooperation, cooperation mode, project-enterprise, virtual enterprise, AEC application

1 INTRODUCTION

Due to the popularization of Internet, cooperative applications of project-enterprise type
are expected to become commonplace on the WEB. By project-enterprise, we understand short-
lived concurrent engineering enterprises which are created by aggregating several partners around a
project and for the duration of this project. AEC is a good representative of such short-lived
enterprises: it implies a lot of partners (architect, research consultant, control office, building
firm, electrician, carpenter,...) which build an enterprise for the duration of the building work.
Project-enterprises require new technologies to organize their short duration networks. Two main
requirements characterize the design of this technology:

• as partners can be small enterprises and have a small computer infrastructure,
technologies must be easy to understand and to use, and must not disrupt the habits of
users,

• for the same reasons, the technology must allow to build safe cooperative applications:
the quality of the service is a central point.

With these requirements in mind, we have developed an approach which allows to develop
cooperative applications by assembling basic cooperation bricks. To assume acceptance of
assembling, protocols of cooperation can be negotiated between partners. To assume safety of
assembling and execution, each concurrent engineering activity executes as a transaction, i.e. in a
frame which allows to assert safety properties on executions.

This paper illustrates our approach. In a first time, it begins with the presentation of some
relative works. In a second time, it describes, through an example taken in the AEC domain, how
our environment allows to build a cooperative application. Then, it gives the principle of our
implementation. Finally, it concludes by generalizing the principles developed previously to better
cover the characteristics of a lot of concurrent engineering applications.

2 COOPERATIVE APPLICATIONS CONTEXT

Due In order to coordinate concurrent updates performed by activities on a distributed
system, we could use either configuration management tools like Continuus [1], ClearCase [2,3],
Adèle [4], or database systems using a transactional approach [5,6,7,8] to allow concurrent access to
shared data by several activities.

Beside configuration management tools and transactional systems which focus on the control
of resource updates, CSCW (Computer Supported Cooperative Work) tools are concerned by social
aspects of the cooperation. Their main issues, which we will not discuss in this paper, are group
management, group awareness or technologies for communication like net-meeting.

Most distributed systems are based on a client/server architecture in which, though single
activities may be executed at geographically distributed nodes, the knowledge about the processes
being executed is kept in a centralized database at the server level. This centralization makes it
easier to synchronize and monitor the overall execution as all decisions are taken on this server
which has a global view of the whole system. However, the main drawback is that clients have to be
connected to this server at all times. Obviously, in the case of project-enterprises this is
unacceptable because of:

• distribution: most configuration management tools are based on a centralized
architecture. Some of them, like Continuus or ClearCase (with the MultiSite extension),
can manage several repositories.

• autonomy: a workspace is the activity view of the repository presented as files and
directories. This allow legacy applications to be used on data managed by the system.
Nevertheless, workspaces are generally stored on the server, so activities have to be
connected at all times. Using Continuus, an activity can run remotely (either connected
or disconnected) by creating a physical workspace. However, to be able to create a new
version of data it modified, this activity will have to reconnect to the server. So activities
are not autonomous in regards to the repository.

• cooperation: configuration management tools are mainly focused on concurrent accesses
to shared data (i.e. version and configuration management). Most of them do not control
exchanges between activities. When provided, this control is delegated to a software
process management layer. However, these software process tools (like workflow for
instance) generally try to design the whole system with all its activities, data and
interactions. That becomes rapidly a very complex task.

This paper introduces our approach to build cooperative applications. Our objective is to
provide a framework to coordinate data exchanges between these activities while ensuring they are
distributed and autonomous. So, unlike configuration management tools or transactional systems,
we want to avoid activity dependency towards any kind of server, neither for data storage nor for
interaction control.

3 AN APPROACH TO BUILD COOPERATIVE APPLICATIONS

3.1 A Project-Enterprise Example in the Domain of AEC

Due To illustrate our approach, we reuse the example developed in [9] (which is derived
from the example presented in [10]). It consists in designing a one-storey apartment containing a
living room with a glass wall. Four kinds of designers cooperate to achieve this work:

• the architect: his activity is to design and represent the apartment spatial organization
with its walls, windows,... To construct his plan, the architect only takes care of

volumes, spaces and luminosity of the apartment.

• the structural engineer: his activity consists in specifying the structural elements of the
apartment. Such elements (cross walls, beams,...) will be chosen to respect, as far as
possible, the choices made by the architect and the overall harmony of the building.
Such an activity leads to modify the plan provided by the architect.

• the HVAC engineer: he will intervene to change the glass wall according to the climate
and the apartment exposure.

• the town planner: he controls the architect’s and gives advice in return. The architect
has to consider this advice and possibly to modify his plan according to it. The town
planner has to validate the final plan. The town planner only takes care of town planning
aspects of the apartment.

Titre:
protocoles.eng
Auteur:
Tgif-3.0-p13 by William Chia-Wei Cheng (william@cs.UCLA.edu)
Aperçu:
Cette image EPS n'a pas été enregistrée
avec un aperçu intégré.
Commentaires:
Cette image EPS peut être imprimée sur une
imprimante PostScript mais pas sur
un autre type d'imprimante.

Figure 1: Document Exchanges and Protocols

These activities operate on various documents they will share: the plan and the advice of the
town planner. All these exchanges between activities will not be driven by the same set of rules. If
in some cases we will encourage activities to cooperate, in some others we will put some constraints.
For example, the architect and the town planner share both the plan and the advice, but in a read-
only mode. It is obvious that the architect will not be allowed to modify the advice delivered by the
town planner, and vice-versa. Protocols used to control exchanges between the various activities are
presented below and illustrated in figure 1:

• client/server: the architect (the server) provides several versions of the plan to the
HVAC engineer (the client). Thus exchanges occur from the architect to the HVAC
engineer.

• writer/reviewer: the town planner reads (but does not modify) the plan provided by the
architect. Then he transmits his advice to the architect that reads (but does not modify)
this document and modifies his plan according to it.

• cooperative write: both the architect and the structural engineer work on the same plan.
During the design activity, they will possibly modify it at the same time, so they will
have to merge changes made by the other in order to produce only one version of the plan
on which they will agree at the end of the activity.

The first step to build this distributed application is to define the various activities of the
system. In our case we use an activity to represent each actor. As our main objective is to make

these activities as autonomous as possible, each of them will have its own repository to store
documents is uses. Therefore cooperation between activities will occur by exchanging documents
between their repositories. But, as we already said, these exchanges have to be controlled by a
protocol. So when an activity want to communicate with another one, these activities begin by
negotiating a cooperation protocol. This negotiation will ensure, at least, that the protocol one
activity wants to use is known by the other. Then, all exchanges between these two will be
controlled by this protocol. Thus each activity will have a cooperation table which purpose will be
to show which protocol to use to communicate with a given activity. For some cooperation modes,
the two activities do not fulfill the same role. For instance, when we use the client/server mode, one
activity is the server while the other is the client. So the cooperation table of an activity should not
only store the protocol to be used to cooperate with others activities, but the role fulfilled by this
activity too. Such a cooperation table for the architect activity is depicted in figure 2.

Activity Remote Activity Document Protocol Role
Architect Structural Engineer Plan Cooperative Write
Architect HVAC Engineer Plan Client/Server Client
Architect Town Planner Plan Writer/Reviewer Writer
Architect Town Planner Advice Writer/Reviewer Reviewer

Figure 2: Cooperation Table for Architect Activity

3.2 Interactions Between Activities

The coordination of the exchanges between two activities is performed by a cooperation
protocol. We already defined three kinds of protocols:

• the client/server paradigm: one actor (the client) can work on preliminary versions of a
document produced by another actor (the server). The only compulsory rules are: the
server must produce the final version of each document it has produced in a preliminary
version, and the client must take into account the last version produced by the server for
each document it has read in a preliminary version. This paradigm permits some
cooperative work which enhances productivity. For example, it allows to start the HVAC
engineer activity before the end of the architect activity and ensures the HVAC engineer
will read the final version of the plan.
As the HVAC engineer has a copy of the plan in his own repository, he is free to modify
this copy if he wants to. But the client/server protocol ensures that he will never be able
to communicate these modifications to the architect.

• the cooperative write paradigm: two actors can modify at the « same time » the same
document. Actually, each of them modifies the copy of this document he owns in its
repository. They have to follow some rules: to be aware of each other work (by
exchanging preliminary versions of this document) and to converge towards a same view
of this document (i.e. they have to agree on the same final version of this document).
In our example, the structural engineer can start his activity as soon as possible and then
provide the architect a more accurate vision of the actual volumes of the plan final
version. To do that, the two actors must be allowed to write at the "same time" a common
plan.

• the writer/reviewer paradigm: this third form of cooperation corresponds to the case in

which an actor produces a document under the control of another. As an example, the
architect is controlled by the town planner who gives advice and validates the final plan.
In this mode of cooperation, the architect (the writer) produces different successive
versions of the plan it has to produce, especially to take into account the review of the
town planner. This review has for objective to enforce the respect of some rules by the
architect. As an example, he can react on the first version of the plan and ask for the
surface of the wall glass to be reduced or the type of the woodwork to be changed. On a
following version, he can react on the global look of the building. We say that the
interactions between the architect and the town planner follow the writer/reviewer
paradigm. The writer is the architect, and the reviewer is the town planner.
This paradigm ensures that the final plan produced by the architect will be reviewed by
the town planner, and that the architect will read the last document produced by the town
planner. Thus the architect and the town planner have to agree to the same final version of
the plan.

From the user point of view, the main advantage of our approach is that we define
cooperation protocols to control document exchanges between activities and not to control activities
themselves. Therefore, an activity is fully independent of other activities for the task it performs.
This means that each actor is free to work like he wants, as long as his document exchanges with
other actors are correct.

3.3 Interactions Between Protocols

When two activities need to cooperate, they negotiate a protocol to control their document
exchanges between their respective repositories. So, an activity can communicate with many other
activities using a different protocol with each of them. Consequently, a same document can be
shared in many ways (i.e. using various protocols). For example, the architect share the plan with
the structural engineer using the cooperative write paradigm, with the HVAC engineer using the
client/server paradigm, and with the town planner using the writer/reviewer paradigm. So, it is at
the document level that protocols will interact (and possibly conflict).

For the architect's activity, the three protocols will interact to exchange different versions of
the plan without conflicts. Actually, only the activities of the architect and structural-engineer can
modify the plan. Nevertheless they negotiated a cooperative write protocol, purpose of which is
precisely to coordinate their concurrent writes. The HVAC engineer and the town planner only read
the architect’s and thus can not conflict with the architect.

Now, let’s suppose the town planner asks a fireman for fire security aspects of the apartment
(figure 3). As they work together on the plan provided by the architect, they negotiate a cooperative
write protocol. For example, to allow quicker access, the fireman puts an emergency exit on the
main street, but for visual aspect the town planner decides to put this exit on the back side of the
building. When they agree, the town planner writes his advice the architect, showing modifications
that have to de done on the plan.

Titre:
interactions.eng
Auteur:
Tgif-3.0-p13 by William Chia-Wei Cheng (william@cs.UCLA.edu)
Aperçu:
Cette image EPS n'a pas été enregistrée
avec un aperçu intégré.
Commentaires:
Cette image EPS peut être imprimée sur une
imprimante PostScript mais pas sur
un autre type d'imprimante.

Figure 3: Protocol Interactions

Thus, the town planner shares the plan with both the architect as client in the client/server
paradigm, and the fireman in a cooperative write mode. Conflicts between these two protocols may
occur at the level of this document. What happens if the town planner decides to modify the plan?
Even if the cooperative write protocol negotiated with the fireman allow this modification, the town
planner is client in his client/server relationship with the architect and this means that he is not
supposed to modify the plan. Beyond the semantics of this conflict, our concern is to define when it
should be detected and how it could be resolved.

As our main objective is to make activities as autonomous as possible, each of them has to be
responsible for conflicts occurring in its own repository. To detect conflicts between protocols, an
activity can proceed in two way: during the negotiation (the activity could test if this new protocol is
« compatible » with all protocols already in its cooperation table) or at run time:

• during the negotiation: the activity has to be able to test if the specifications of two
protocols are « compatible ». This kind of problem can not only be complex, but it can
restrict the cooperation between activities. For example, if the town planner uses this
solution, it will not be able to choose a protocol to cooperate with the fireman because it
can not modify the plan provided by the architect.

• at run time: during the negotiation, activities do not care for compatibility between
protocols. Conflicts will be detected when they occur effectively, i.e. when an activity
try to exchange some documents with another activity. Let an activity A share the same
document with various activities B1..Bn using the protocols P1..Pn. It can proceed in two
way:

 each exchange between A and Bi is controlled by all the protocols P1..Pn. A
conflict will be immediately detected and the faulty exchange will be refused. In
such a way we always ensure data integrity. But if such an exchange initiated by
Bi is refused, this means the activity Bi could be disturbed by a protocol different
from the one negotiated with A.

 an exchange between A and Bi is controlled only by the protocol Pi. So
exchanges between A and Bi strictly respect the protocol negotiated between A
and Bi. If such an exchange creates a conflict for a protocol Pj (j≠i), this conflict
will be detected when the activity A will try a new exchange with the activity Bj.
As we can see, the activity A is the only one to be aware of this conflict.

Whatever solution we use to detect conflicts between protocols, only the activity in which a

conflict occurs is responsible for its resolution (the town planner in our example). The main
difference between these three methods is the disruption of such a conflict on the other activities.

Two activities can cooperate by exchanging some documents at run time. In order to
coordinate their communications, these activities must begin by negotiating a cooperation protocol.
Then, the system will ensure that all exchanges between these two activities will respect this
protocol, while keeping activities independent of one another: in case of protocol violation, only the
faulty exchange is refused. There is no constraint on the tasks these activities perform. However, an
activity cooperating with several other activities, possibly using various protocols, could end in a
situation in which all the exchanges it will try will break at least one protocol and so will be refused.
Thus we should provide not only tools to define protocols and to detect conflicts between these
protocols, but mechanisms for conflict management too:

• conflict notification: first, the user (i.e. the actor driving the activity) should be noticed
when a conflict occurs. However, the system should not only notify that an exchange
operation was refused, but should also detail the reasons it was refused.
As an example, when the town planner tries to modify the plan for the first time, he
should be noticed that he will not be able to communicate his modifications to the
architect (as defined by the writer/reviewer relationship, he can only « read », i.e. import
in its repository, the architect’s plan).

• protocol renegotiation: such a deadlock situation could be due to the protocol negotiated
between two activities and defined too strictly. So activities should be able to renegotiate
this protocol.
In our example, if the town planner modifies the architect’s plan, then he will not be able
to communicate his advice to the architect. Actually, the writer/reviewer protocol
considers the plan and the advice as a single logical document because they are
interdependent (the final advice must be produced with the final plan version, and the
final plan must take into account the final advice). So, when the town planner wants to
send his advice to the architect, the protocol sends in fact the logical document in order to
preserve document consistency. But the town planner modified the plan. As it is not
allowed by the writer/reviewer protocol, this exchange will be refused. A solution will be
that the town planner and the architect can be able to renegotiate this protocol and decide
to cooperate using the cooperative write paradigm for instance.

• version management: another solution is to be able to « undo » some work. As for
configuration management tools, this means that an activity can develop, in its repository,
its own version branch for documents it uses. At the end of this activity, it should be able
to produce its results according to any versions of these documents. For instance, the
activity could come back to the document version it imported. This means that the
modifications this activity did on these documents will not be visible to other activities.

As an example, let’s suppose that the renegotiation presented above fails. When the town
planner’s advice will be written, the only solution is to « undo » all modifications done on the
architect’s plan. Then, the town planner can release his advice according to the plan version it
imported from the architect.

4 FRAMEWORK OF OUR COOPERATION SUPPORT

Our main objective is to make activities as autonomous as possible, both towards the
network (reachability, bandwidth,...) and the other activities (availability, confidence,...). A first
step was to assign a local repository to each activity. Thus an activity can store locally a copy of
documents it accesses to. The second step is the distribution of the data interchange control. The
main idea is that each activity has to be responsible for data it owns in its repository. Moreover, to

ensure the consistency of its data an activity should not be dependent of data owned by another
activity. This means that an activity should be able to manage its data using only local information.
That’s the reason why, if two activities want to exchange a document, both of them verify that this
exchange respects the protocol they negotiated according to their own data. If at least one of them
detects a conflict, then this exchange is aborted.

4.1 Design

Now, we present the framework we designed to coordinate, using various protocols, data
exchanges between widely distributed activities. We must define how an activity stores its data
locally, what’s a cooperation protocol, and how activities control data exchanges using these
protocols.

Remember that we don’t want to disrupt the habits of actors. From the user point of view,
this means that we should be able to work on shared data using legacy tools, which generally can
access to files and directories only. So we split the local repository of an activity in two parts: a
public one, called cooperation space, in which the activity will store versions and configurations of
data it uses, and a private which is the workspace itself (i.e. where legacy tools will store their files).
So, when a user imports a document from another activity, this document is stored in its cooperation
space. To be able to access it through its legacy tools, he must extract this document to its
workspace to obtain a file his applications can read and write. When he thinks he has reached a
consistent state, he publishes the result of his work (i.e. the file). This operation updates the
document in its cooperation space, i.e. creates a new version of this document which is now
available to other activities. As depicted in figure 4, an activity is made of four main parts:

• a Cooperation Space which is the local repository of the activity. It is in charge of
creating/deleting resources, checking in/out documents between the cooperation space
and the workspace, and managing versions and configurations for local resources.

• a Workspace which shows resources as files and repositories, so actors can use their
legacy applications.

• a Protocol which is based on the cooperation table of the activity. It ensures that a
sequence of exchanges between two activities is correct (according to the cooperation
paradigm they negotiated).

• a Coordinator which is the activity interface for other activities. Thus all exchanges
between activities have to be done through their coordinators. This prevents activities to
perform, directly between their cooperation spaces, data exchanges which are not
controlled by any cooperation mode. Moreover, it allows the cooperation space and the
protocol to be defined independently.

This framework can be considered to be a flexible transaction model, i.e. cooperating
activities can be seen as being concurrent transactions. But unlike classical ACID (Atomic,
Consistent, Isolated, Durable) transactions, these activities (eventually distributed over a Wide Area
Network) can exchange intermediate results. So we break down the isolation property. To
coordinate these data exchanges between activities, we define various protocols. Using a
transactional approach, we base these protocols on correctness criteria which ensure consistency
properties in a cooperative context. With regard to the three cooperation paradigms we described
above (client/server, writer/reviewer, cooperative write), they respect our correctness criterion called
COO-serializability.

Titre:
archi-p.eng
Auteur:
Tgif-3.0-p13 by William Chia-Wei Cheng (william@cs.UCLA.edu)
Aperçu:
Cette image EPS n'a pas été enregistrée
avec un aperçu intégré.
Commentaires:
Cette image EPS peut être imprimée sur une
imprimante PostScript mais pas sur
un autre type d'imprimante.

Figure 4: Framework Architecture

4.2 A Cooperation Service

Our objective is to provide a toolkit to build distributed cooperative applications. We don’t
want to develop yet another proprietary system, but to define a set of cooperation services instead.
In other words, we intend to describe what are the basic services needed to build distributed
cooperative applications. We identified four main services: a cooperation space service, a
workspace service, a protocol service, and a coordination service.

Obviously, the core of our framework is the service related to protocols. As mentioned
above, an activity protocol is defined by a cooperation table which shows the protocol to be used for
communicating with a given activity. So cooperation paradigms can be viewed as basic generic
cooperation bricks we compose to specify the protocol for an activity. This should provide the
following functionalities:

• definition of basic generic cooperation bricks (according to some correctness criteria)

• protocol negotiation between activities

• cooperation table management

• control of data exchanges

• conflict detection and notification (this includes the ability to find and explain what
caused the conflict)

To implement our cooperation services, we chose to conform to CORBA [11], which has
became a standard in the distributed object community. From the developer point of view, this
means that all the aspects related to object distribution (possibly over a heterogeneous network of
stations) are taken into account by the ORB (Object Request Broker). Moreover, our services can
use and be used by other CORBA services. So they easily can be integrated into existing CORBA

distributed systems, which is a key feature of our framework for cooperation support.
A prototype of our framework is being developed using Java [12] as programming language

and JacORB [13] as Object Request Broker (which is itself coded in Java). Thus we are independent
from the underlaying operating system (Unix, Windows 95/NT,...).

5 CONCLUSION

This paper has introduced our approach to build cooperative applications. In a first time, a
map of the interactions between the activities of the application is drawn; in a second time, the
application is generated thanks to a set of cooperation services. If this approach is ambitious and
difficult to achieve in its globality, our experience [14,15,16] demonstrates that it is feasible with a
limited set of cooperation protocols (those introduced in the motivating).

Our objective now is to extend the approach by incorporating new cooperation behaviors.
We are generalizing the principles developed previously to define a more large set of basic
cooperation bricks in order to better cover the characteristics of a lot of concurrent engineering
applications [17]. The more difficult problem we tackle is to find out new correctness properties to
validate the integration of the new protocols corresponding to the new cooperation behaviors.

REFERENCES

[1] Continuus/CM: Change Management for Software Development.
http://www.continuus.com/developers/ developersACED.html

[2] Larry Allen, Gary Fernandez, Kenneth Kane, David Leblang, Debra Minard, and John
Posner. ClearCase MultiSite: Supporting geographically-distributed software development.
In Jacky Estublier, editor, Software Configuration Management: Selected Papers of the
ICSE SCM-4 and SCM-5 Workshops, number 1005 in Lecture Notes in Computer Science,
pages 194-214. Springer-Verlag, October 1995.

[3] Atria Software Inc. ClearCase product summary. Technical report, Atria Software Inc., 24
Prime park Way, Natick, Massachusetts 01760, 1994.

[4] N. Belkhatir and J. Estublier. ADELES-TEMPO: An Environment to Support Process
Modelling and Enaction. In J. Kramer A. Finkelstein and B. Nuseibeh, editors, Software
Process Modeling and Technology. Research Study Press, 1994.

[5] P.A. Bernstein and N. Goodman. Concurrency Control in Distributed Database Systems.
ACM Computing surveys, 13(2):186-221, 6 1981.

[6] J. Elliot Moss. Nested Transactions: An Approach to Reliable Distributed Computing. PhD
thesis, MIT, 1981.

[7] Goodman N., Beeri C., Bernstein P.A. A model of concurrency in nested transactions
systems. Journal of the ACM, 36(2):230-269, 1989.

[8] P.K. Chrysanthis and K. Ramamritham. Synthesis of Extended Transaction Models.
19(3):451-491, 1994.

[9] K. Benali, J.C. Bignon, C. Godart, and G. Halin. Cooperation models in co-design:
application to architectural design. In Proceedings of ICD&DSS, Maastricht, Holland, July
1998.

[10] M.A. Rosenman and J.S. Gero. Modeling multiple views of design objects in a collaborative
CAD environment. Computer-Aided Design, 2893):193-205, 1996.

[11] OMG. The Common Object Request Broker Architecture and Specification. Technical
Report 2.0, Object Management Group, 1995.

[12] SUN. The Java(tm) language: an overview. ftp://ftp.javasoft.com/docs/java-overview.ps,
1994-1995.

[13] Gerald Brose. A Java Object Request Broker. Technical Report B 97-2, University of Berlin,
1997.

[14] G. Canals, P. Molli, and C. Godart. Concurrency control for cooperating software processes.
In Proceedings of the 1996 Workshop on Advanced Transaction Models and Architecture
(ATMA’96), Goa, India, 1996.

[15] C. Godart, G. Canals, F. Charoy, P. Molli, and H. Skaf. Designing and Implementing COO:
Design Process, Architectural Style, Lessons Learned. In International Conference on
Software Engineering (ICSE18), 1996. IEEE Press.

[16] P. Molli. COO-Transactions: Enhancing Long Transaction Model with Cooperation. In 7th

Software Configuration Management Workshop (SCM7), LNCS, Boston, USA, May 1997.

[17] K. Benali, G. Canals, C. Godart, and S. Tata. An Approach for Developing Cooperation in
Project-Enterprises. In Proceedings of the 3rd International Conference on the Design of
Cooperative Systems, Cannes, France, May 1998.

	ABSTRACT
	1 INTRODUCTION
	2 COOPERATIVE APPLICATIONS CONTEXT
	3 AN APPROACH TO BUILD COOPERATIVE APPLICATIONS
	3.1 A Project-Enterprise Example in the Domain of AEC
	3.2 Interactions Between Activities
	3.3 Interactions Between Protocols

	4 FRAMEWORK OF OUR COOPERATION SUPPORT
	4.1 Design
	4.2 A Cooperation Service

	5 CONCLUSION
	REFERENCES

