
AllianceNet: Information Sharing, Negotiationand Decision-Making for DistributedOrganizationsJean Marc Andreoli1, Stefania Castellani1, and Manuel Munier?21 Xerox Research Centre Europe, Grenoble Laboratory, F-38240 Meylan, France,fandreoli,castellag@xrce.xerox.com2 IUT des Pays de l'Adour, 40004 Mont de Marsan, France,munier@marsan.univ-pau.frAbstract. We explore issues in providing support for information shar-ing, negotiations and decision-making to distributed autonomous organi-zations, grouped in alliances to improve their own ability to accomplishcustomers' requests. In particular, we consider the case of an allianceof printshops o�ering similar and/or complementary print competenciesand capabilities, competing but also collaborating with each other toperform print jobs.We present a typical scenario of the activities within such an alliance,where the main task of the printshop managers is to schedule their port-folio of jobs. We then introduce a multi-agent architecture, called Al-lianceNet, allowing a manager to exibly negotiate with the allied print-shops some jobs that s/he cannot or does not wish to perform locally.The purpose of the agents in AllianceNet is not to replace the printshopmanagers, but rather to assist them in the decision process by makingavailable the information needed in the negotiations and by automat-ing the tasks implementing the committed decisions. In particular, wediscuss the kind of information used and shared among printshops, thesupport o�ered to printshop managers to make informed decisions andto consistently enact and monitor their execution.Keywords: Negotiation, Protocols, Decentralized systems, Agent models andarchitecture, \Business-to-business" electronic commerce.1 IntroductionWe explore issues in providing support for information sharing, negotiations anddecision-making to distributed autonomous organizations grouped in alliances.We consider here alliances of organizations o�ering similar and/or complemen-tary competencies and capabilities, competing but also collaborating with eachother to improve their own ability to accomplish customers' requests. In partic-ular, we are interested in an alliance of printshops executing print jobs (simply? Work performed while visiting the Xerox Research Centre Europe in Grenoble



called jobs in the sequel). Each printshop may act sometimes as an \outsourcing"entity, submitting job requests to other printshops in the alliance, and sometimesas an \insourcing" entity, accepting such requests. In fact, the interactions weconsider between the printshops are very general \business-to-business" inter-actions, so that our approach applies to any alliance of organizations, whatevertheir domain (the case of printshops has been chosen mainly because of its closelinks to Xerox core business).The collaborations within an alliance can be partially formalized and auto-mated as workows, but they cannot be satisfactorily modeled by simple activitydiagrams with rigid dependencies de�ning only synchronizations and orderingbetween \blackbox"-like activities. More realistically, the printshop managersshould be exibly supported in scheduling and negotiating their portfolio ofjobs. For example, a printshop manager may wish to outsource a job and thenselect, among the printshops making insourcing o�ers, those providing the bestcost/color-quality performance ratio. Also, the manager of an insourcing print-shop may need to re-negotiate with the outsourcing printshop the commitmentfor a job, e.g. for changing a deadline. To be successful, an information tech-nology tool supporting such an alliance should satisfy two constraints: it shouldbe non-disruptive, i.e. respect the actual work practice, and at the same time itshould create new opportunities.Printshops in an alliance are fully autonomous organizations and, as such,each of them is responsible for managing its own jobs and resources. This pre-cludes a straightforward approach to the management of the alliance, in whicheach partner is requested to declare to the alliance all its available resources(both human and machines), and the alliance handles all the customer requests,splitting and dispatching them in an optimal way among the di�erent partners,using, for example, planning and job-shop scheduling techniques. Indeed, thishighly centralized approach, based on a \super-scheduler", is not adapted to thesituation we consider for several reasons: (i) given the competitive context, theprintshop managers are unlikely to give up control over their job portfolio andtheir resources; (ii) many decisions on how to best manage the jobs in a print-shop must take into account information that can only be provided by the peopleworking in that printshop itself: this information comes from their experienceand the printshop local interests and is di�cult to formalize and integrate ina super-scheduler; (iii) a \super-scheduler" solution in a distributed context isusually di�cult to scale-up and to evolve dynamically.Sec. 2 describes in more details the activities of a single printshop and itsinteractions with the alliance. Sec. 3 introduces a multi-agent architecture, calledAllianceNet, supporting the negotiations occurring in the scenario previouslydescribed. In particular, we discuss the kind of information used and sharedamong printshops, the support o�ered to printshop managers to make informeddecisions and to consistently enact and monitor their execution. Sec. 4 describesour current directions of investigations.



2 A Printshop Alliance ScenarioThe following scenario is a simpli�ed, though non-trivial description of the ac-tivities in a printshop including its interactions with the customers and possiblywith other printshops. Building upon the description of a variety of print workprocesses (in [6] and [4]), we have de�ned a model for printshop activities whichcould be modi�ed to encompass/exclude some activities and re�ne role assign-ments, but which attempts to model signi�cant kinds of behaviors.A printshop may receive print requests from both customers and other print-shops (outsourcing requests in the latter case). Conversely, the printshop man-ager maywish to outsource some of her/his jobs, totally or in part, to the alliance.When a print request reaches the printshop with given parameters (e.g. dead-line), a �rst estimation is established. The manager analyses the job descriptionto understand how it can be accomplished, taking into account the current jobschedule, the availability of the resources, and trying to optimize the global cost.Existing ad-hoc scheduling tools can be used here. Based on the results of thisevaluation, the manager decides either to reject or to accept the print request. Inthe former case, the negative decision is communicated to the requester. In thelatter case, the job has to be allocated. If the current schedule of the printshopallows inclusion of the new job, the manager may decide to perform it locally.However, it may be possible that the job cannot be locally performed (at leastnot as a block), given the requirements, the printshop resource availability andtechnical capabilities. For example, if the request includes a color print and theprintshop has only black and white printers, then at least the part requiring acolor printer should be outsourced. Moreover, even if the execution of the job isconsistent with the printshop schedule and equipment, the manager might stilldecide to outsource (part of) the job, for example, in order to save some of theavailable resources for a job currently under negotiation with a major customer.If the manager decides that (part of) the job has to be performed remotely,(s)he will start a negotiation with the partner printshops. The outcome of anegotiation can be \success" (the job was fully outsourced), \failure" (no out-sourcing agreement could be reached) or \partial" (only part of the job couldbe outsourced). An elementary negotiation scheme relies on an \invitation totender". The manager decides if and how to split the job into slots and noti�esthe other printshops in the alliance about the outsourcing requests for the dif-ferent slots. The manager collects quotations from partner printshops, evaluatesthem and chooses a solution. The outsourced job (or slots) is (are) then sentto the selected insourcer(s). If no \good" solution is found, the manager mayaccept a sub-optimal o�er anyway (and possibly face delays), or re-allocate localresources in order to perform the job locally, or revise the splitting of the job.In any case, the process of choosing a solution is far from trivial and we do nottry here to automate it (using so called \intelligent" agents). Once a solution isadopted, it must be implemented and monitored.The main requirement for the architecture is that it must o�er a lot of exi-bility in the negotiations occurring in the scenario described above. The managerof a printshop is responsible for issuing the quotations and for allocating the jobs



of that printshop. So, (s)he needs to make informed decisions based upon theestimations, the job schedule of the printshop and the knowledge (s)he has aboutthe other printshops technical capabilities and actual resources availabilities.The manager should be able to negotiate jobs in several ways, and choose anegotiation model on a case by case basis. For example, if a job cannot be per-formed as a unique block, the manager must split the job and make outsourcingrequests of (some of) the pieces. The splitting may be decided a priori, on thebasis of the structure of the job, and thus entirely precede the submission of theoutsourcing requests, but, more realistically, the two processes have to occur inparallel, the splitting being revised as potential insourcers produce o�ers.The manager may also need to re-negotiate the commitment for a job, e.g.when a customer changes requirements and the manager has already commit-ted with an insourcing printshop, or when an insourcing printshop is unable torespect a deadline.3 An Architecture for AllianceNetThe architecture described here mainly focus on the distributed negotiation as-pects of the previous scenario.3.1 The Agent InfrastructureWe consider a distributed architecture (Figure 1) where each printshop is a siteat a node of the network, allowing collaboration among them. The alliance itselfmay have resources of its own, to store the state of the negotiations, whichmay be dispatched on some of the partners' sites, or at some distinct alliancespeci�c sites. Other partners in the alliance, which are not printshops but o�ercomplementary services, are also represented as di�erent sites.Several kinds of existing tools can support a printshop manager when issuingjob quotation and managing the job schedules. For example, in a UK commercialprintshop, the manager and her/his collaborators make use of a forward loadingboard, as reported in the case study in [4]. Another possibility could be to adopta simulation tool like Zippin [2], that allows to simulate job schedules withalternative con�gurations for jobs and resources and to evaluate bene�ts anddrawbacks. In all cases, the architecture must be able to integrate existing toolswhich may not have been developed according to its own model. A coordinationinfrastructure, with wrapping capabilities, is thus needed.In the case study cited above, negotiations among printshops are performedby non computer supported means, e.g. through telephone calls between print-shop managers. On the contrary, our architecture seeks to provide the managerswith a computer support for exible negotiations. The idea is to bene�t from thedistributed setting to create a computer supported \market" inside the alliance.In AllianceNet, this market is modeled by business objects and business rulesimplemented on an agent based virtual enterprise development platform called



����
����
����
����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

����
����
����
����

����
����
����
����

�����
�����
�����
�����

���
���
���
���

����
����
����
����

���
���
���
���

����
����
����
����

ParticipantParticipant

Participant

CoordinatorCoordinator

Participant

Coordinator

Coordinator

Participant

Coordinator

Participant

Participant

Coordinator

Participant

Objects

Set of CLF

Legacy application

Wrapper to

Yellow
Pages

Coordinator Participant CLF protocol

Payment-System

Alliance Broker

Mediator
Payment

Printshop Printshop Printshop

Fast
Courier

Fast
CourierElectronic-Cash

Provider Fig. 1. Overall architectureCLF [1]. CLF o�ers two major features that are adapted to our needs: a libraryof business objects and a portable scripting language.CLF (and in particular its subsystem called Mekano [1]) o�ers a library ofready-made customizable business objects, as well as facilities to devise new ob-jects without starting from scratch. These new objects can then be integratedinto Mekano for later re-use. Compared to other platforms with similar goals,such as Jini, Enterprise Java Beans or Corba, the main characteristic of CLF isthat it is built around a rich object model (\objects as resource managers") inwhich basic features enabling negotiation are accounted for at the lowest inter-action protocol level, through eight interaction \verbs" (a la KQML) similar tospeech acts as found in many agent models. There are two main classes of verbs,allowing respectively to search for distributed resources and to consistently en-act distributed resource manipulations. The sequencing of the verb occurrencesmust conform to a correctness criterion, and a state diagram captures the possi-ble states of the participants in an interaction and their transitions (a classicaltechnique to specify negotiation protocols, e.g. see [7, 9]). The complexity of the



diagram is hidden to the programmer by a set of tools provided by the Mekanolibrary.We make use of the following CLF objects. For each printshop, a CLF Print-shop object (new to Mekano) manages job descriptions and time slots, heldas resources. A general description of each partner printshop in the alliance ismade available through a CLF Yellow pages object (customized from an exist-ing Mekano component), which is an alliance-level object. It is thus possibleto search for and establish connections with any printshop in the alliance onthe basis of its capabilities (e.g. its equipments). Dynamic registration or de-registration of printshops in/from the alliance is directly accounted for by theCLF object model and does not require special treatment. CLF \Fast Delivery"objects o�er distributed delivery services and a CLF \Payment Mediator" ob-ject provides payment facilities [1]. These two kinds of objects are provided byMekano (but not yet integrated in our prototype).3.2 Negotiation using CLF ScriptsOne of the most salient feature of CLF is its powerful coordination facilities, pro-vided by a highly portable scripting language, adapted to describe business rules.Interpreters of this language are CLF objects called coordinators which manipu-late rule-based scripts as resources, allowing reexivity and a lot of exibility inthe organization of the interactions between the partners of the alliance (for out-sourcing, insourcing, job splitting and services combinations, e.g. printing anddelivering). We outline here the scripts used in our prototype to support someforms of negotiation. For lack of space, we cannot describe in detail the generalbehavior of CLF scripts. The interested reader is referred to [1]. Basically, CLFscripts are made of rules which have a purely declarative interpretation in termsof resource manipulations (see the examples below), together with a correspond-ing operational interpretation that makes use of the resource oriented primitiveso�ered by the CLF protocol (the eight verbs). Not surprisingly, rules have of-ten been used for the exible coordination of tasks in workow management ortransactions in federated databases.For example, a simple outsourcing mechanism is implemented in CLF by thefollowing rule:JobRequest(job) @ Partner(job,dest) @Offer(dest, job, offer) @ Accept(job, dest, offer)<>- OutJob(job, dest, offer)This rule asynchronously builds a search-tree of all the possibilities to outsourcea job request, and enacts one of them. The left-hand side of the rule (left of <>-)speci�es the resources needed (in combination) to achieve outsourcing: (i) a jobto outsource: JobRequest provided by a PrintShop agent, (ii) a partner print-shop that could potentially insource the job: Partner provided by the Yellowpages agent, (iii) an o�er: Offer made by that partner for that job, and (iv)an acceptance of that o�er: Accept generated by the partner who initiated theoutsourcing. All these resources are searched in their respective agents using the



search capabilities of the CLF protocol. During this search phase, the agents mayasynchronously provide an unbounded number of resources to match the tokensin the rule: for example, the Yellow page agent may return a stream of potentialpartners that are a-priori suitable for the job, and may asynchronously �ll thestream as new partners join the alliance or change their description. Hence, theexecution of the rule builds a search tree, with new branches being created eachtime a new matching resource is found. When one branch is complete, the enact-ment capabilities of the CLF protocol are used to ensure the atomic consumptionof the resources. Each agent is asked to reserve (if possible) the resource it re-turned in this branch of the search phase, and if all the reservations succeed, theyare all con�rmed, otherwise the transaction (for that branch) is aborted, but theother branches are still concurrently active. This allows to account for missingresources, which are available at search time but not anymore at enactment time,e.g. a job request which was �nally allocated locally instead of outsourced, or ano�er which relied on a machine which then became out-of-order, or a printshopthat retracted from the alliance, etc. Other verbs of the CLF protocol are usedto propagate failure information in the construction of the search tree (and thusavoid developing branches that are doomed to fail), and to notify the successfulenactment of a branch (insertion of the OutJob resource on the right-hand sideof the rule).A printshop manager may also wish to split jobs into slots and outsourcethem separately. This could be done by a new rule for the splitting and the ruleabove for the outsourcing. However, that would force the decision to split or notto be taken a-priori. Instead, a manager may wish to try at the same time tooutsource the job as one block and by pieces, making sure of course that in theend, only one of the two solutions is actually adopted. This is realized by thefollowing CLF script, which fully exploits the transactional facilities of the CLFprotocol.JobRequest(job) @ SplitJob(job, part1, part2) @Partner(part1, dest1) @ Offer(dest1, part1, offer1) @Partner(part2, dest2) @ Offer(dest2, part2, offer2) @Accept(part1, dest1, offer1) @ Accept(part2, dest2, offer2)<>- OutJob(part1, dest1, offer1) @ OutJob(part2, dest2, offer2)This rule can (and will) safely run in parallel with the previous rule for the non-splitting case. Indeed, the splitting rule will be e�ectively enacted for a givenjob only if insourcers for both pieces of the split job are found and accepted bythe outsourcer. If the splitting rule is �nally enacted, the JobRequest resourceis removed, thus disabling the non-splitting rule for that job (and vice-versa).Also, several resources may match the SplitJob token in the rule, correspondingto di�erent ways to split the job, e.g. by the bulk, or according to the structureof the job (coversheet vs content or color pictures vs black and white text). Allthese possibilities will be explored in parallel in the construction of the searchtree, but again, in the end, at most one possibility will be e�ectively enacted.Other mechanisms for outsourcing jobs can as easily be implemented usingCLF scripts. For example, the \Dutch auction" mechanism can be captured bya slight modi�cation of the above scripts. Consider the case without splitting.



In a Dutch auction session, the outsourcer publishes the information concerningthe job to be outsourced, as in the previous case, but instead of waiting forinsourcing o�ers, it also publishes a proposed bargain for the job. Potentialinsourcers may then accept the bargain as such, and the �rst one to do so getsit. If the bargain is not taken by anyone, the outsourcer may then revise itand propose a new bargain (eventually with more appealing conditions). Thefollowing script implements such a behavior.JobRequestDA(job,bargain) @ Partner(job,dest) @@ AcceptDA(job, dest, bargain)<>- OutJob(job, dest, offer)Here, the resources involved are: (i) a job to outsource under the Dutch auctionmechanism, together with a bargain: JobRequestDA provided by a PrintShopagent, (ii) a partner printshop that could potentially insource the job: Partnerprovided by the Yellow pages agent, (iii) an acceptance of the bargain attachedto the initial request: AcceptDA generated by the partner who potentially wishesto insource the job.The CLF scripts given above can be re�ned, customized at each partnersite. That can even be done dynamically while the system is running, usingthe reective features of CLF that allow to manipulate scripts as resources. Itis thus very easy to de-activate a rule and activate a new, replacement rule.For instance, the splitting rule could thus be dynamically replaced by a variantin which a control token is inserted in the left-hand side, making some basicautomatic cross-checks on the o�ers made by the partners. Again, the resource-oriented transactional semantics of the CLF ensures that the de-activation ofa rule does not generate inconsistencies: de-activation of a rule is treated as amissing resource.Rules can also be combined in various ways, to achieve more complex behav-iors, e.g. heterogeneous splitting where a job is split and one part is outsourcedunder the Dutch auction mechanism while the other part is outsourced by theusual mechanism; or arbitrary joining of jobs, where two, a priori independentjobs are joined together to be considered as one outsourcing job request.3.3 The Printshop Manager InterfaceFigure 2 shows the interface for a printshop manager in the alliance. It shows thelocal jobs (\List of my jobs") and the job requests issued by remote printshops(\Job requests from partners"). Jobs that are intended to be done locally orjobs for which job requests have not yet been de�ned, are shown as type \J" inthe \List of my jobs". Jobs for which the manager has issued a job request areshown as type \JR". Upon selection of a job from the list, the interface displaysdetails about that job.In the case of a \Job request" (type JR), the detailed view includes the list ofthe o�ers for that request (if any) made by the alliance partners. For example,in Figure 2 the job job01 has been selected and the corresponding detailed viewhas been displayed. This view allows the manager to: (1) accept an o�er; or (2)retrieve the job; or (3) split it.



Fig. 2. The User Interface: Viewing partners' proposals for an outsourced jobIf the manager accepts an o�er, the job is assigned to the partner who madethat o�er (the job entry in the \List of my jobs" view is removed and the jobappears in the partner's \List of my jobs" view). If the manager retrieves the jobthen the corresponding job request is removed and the job becomes a local job(the job status in the \List of my jobs" changes to \J"). Finally, if the managersplits the job in two slots, two new corresponding requests are created (see job02in Figure 2). The non-split job request is not removed, so that the manager canstill choose between splitting or non-splitting o�ers. Of course, if one of the twoalternatives is accepted and succeeds, the other one disappears from the view.In that case, if the manager mistakenly accepts the other alternative before itdisappears (which may happen given the asynchronous infrastructure), (s)he willanyway be noti�ed of the error since the transaction will abort (the job requestis already consumed).In the case of a local job (type J), the detailed view shows a description of theselected job and allows the manager to turn it into a job request for outsourcing.Finally, the \Job request from partners" view shows information about thejob requests sent by the other printshops in the alliance (e.g. the printshop thatmade the request). Upon selection of a remote request from this list, a detailedview of the job is displayed that allows the manager to: (1) see the o�ers (s)healready made (if any) for that request (but not proposals from other partners,thus preserving con�dentiality); (2) make an o�er or a new o�er; and (3) deletea previous o�er.



4 PerspectivesThe basic negotiation mechanism illustrated in the previous section is essentiallyan extension of the Contract Net protocol [12] (or similar mechanisms such asthe Dutch Auction) with transactional facilities, which enable the coordinatedexecution of a collection of concurrent, interdependent Contract Nets (e.g., inthe case of splitting, there are Contract Nets for the job request as a whole andfor the pieces).However, each Contract Net, in the system presented here, is rather rudi-mentary, in that the end decision in the protocol is made on the basis of theo�ers that have been received, with a priori no possibility to request revisionsof the o�ers (e.g. to make counter-o�ers, as in [8]), except of course by outsidemeans, such as direct (e.g. phone) conversations between the printshop man-agers. The �rst step to overcome this limitation is to re�ne the structure ofthe o�ers and replace them by negotiation objects. The most simple negotiationobject is a price: an outsourcing request speci�es the description of a job andthe insourcing o�ers specify a price. But negotiation objects may be more so-phisticated. They may include re�nements of the speci�cation wherever it wasleft free (e.g. color quality or price range), thus allowing unbounded chains ofsuccessive re�nements. The re�nement process is multi-phase and based, again,on speech acts [5]. At each stage, the negotiation may progress in two ways:either by re�ning the negotiation object, or by simply giving it up and replac-ing it by several alternative negotiation objects (e.g. black-and-white in twodays or color in three) which may then be negotiated concurrently. Thus, westill have a search tree, developed asynchronously, whose branches represent thedi�erent ways to proceed. The transactional semantics ensures that only onesolution will be selected at the end. Inactive branches of negotiation may besaved, so as to be re-activated in case of re-negotiation. Thus, we move from auni-directional \announce/collect/decide" paradigm to a multi-directional \an-nounce/re�ne/decide" paradigm.Note that the re�nement process for negotiation objects is similar to propaga-tion in distributed constraint satisfaction [13,11]. No deep assumption is madehere about the nature of the propagated information. In usual DCSP, it maybe choices of value or no-goods, propagated according to a static or dynamicprioritization on the agents [3]. Here, the propagated information, held by thenegotiation objects, is de�ned in a negotiation language, known to all the part-ners in the alliance, e.g. capable of constraining prices, print quality, deadlines,delivering conditions, etc. The negotiation object could also include a history ofits evolution, and not only static attribute-value informations. This would allowto constrain not only the values of the attributes concerning the job at hand,but also the ordering in which decisions about that job have been taken. Finally,the ordering of the propagations itself could be constrained by some negotiationprotocols known to all the partners in the alliance (e.g. turn-taking or master-slave propagation; see [10] for a detailed investigation of these schemas), andwhich could themselves be negotiated.



5 ConclusionIn this paper, we have presented an infrastructure providing support for in-formation sharing, negotiations and decision-making to distributed autonomousorganizations, grouped in alliances. Flexibility, an absolute requirement in thiscontext, is achieved by combining techniques coming mainly from three di�erentdomains: (i) multi-agent systems, (ii) (relaxed) transaction models and work-ows, (iii) (distributed) constraint satisfaction.Acknowledgement We are grateful to Fran�cois Pacull, Jean-Luc Meunier andChrister Fernstrom for helpful comments on this paper.References1. J-M. Andreoli, D. Arregui, F. Pacull, M. Riviere, J-Y. Vion-Dury, and J. Willam-owski. CLF/Mekano: a framework for building virtual-enterprise applications. InProc. of EDOC'99, Manheim, Germany, 1999.2. J-M. Andreoli, S. Castellani, U. Borgho�, R. Pareschi, and G. Teege. Agent-baseddecision support for managing print tasks. In Proc. of PAAM'98, London, U.K.,1998.3. A. Armstrong and E. Durfee. Dynamic prioritization of complex agents in dis-tributed constraint satisfaction problems. In Proc. of IJCAI'97, 1997.4. G. Button and W. Sharrock. The production of order and the order of production.In Proc. of ECSCW'97, Lancaster, U.K., 1997.5. M. Chang and C. Woo. A speech act based negotiation protocol: Design, implemen-tation and test use. ACM Transactions on Information Systems, 12(4):360{382,1994.6. C. Eliezer and D. Zwang. Print production workow: De�ning the issues. PatriciaSeybold Report on Publishing Systems, 27(3), 1997.7. J-L. Koning, G. Francois, and Y. Demazeau. An approach for designing negotiationprotocols in a multi-agent system. In Proc. of IFIP'98, pages 333{346, Wien,Austria, 1998.8. C. Koo. A commitment-based communication model for distributed o�ce environ-ments. In Proc. of the Conference on O�ce Information System, New-York, NY,U.S.A., 1988.9. S. McConnell. Negotiation facility, 1999. OMG �nal revised submission for a Corbaservice.10. M. Munier. Une Architecture pour Int�egrer des Composants de Controle de laCoop�eration dans un Atelier Distribu�e. PhD thesis, Universit�e Henri Poincar�e,Nancy, France, 1999.11. C. Petrie, H. Jeon, and M. Cutkosky. Combining constraint propagation andbacktracking for distributed engineering. In Proc. of the AAAI'97 workshop onConstraints and Agents, Providence, RI, U.S.A., 1997.12. R.G. Smith. The contract net protocol: High level communication and control in adistributed problem solver. IEEE Transactions on Computing, 29(12):1104{1113,1980.13. M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint sat-isfaction for formalizing distributed problem solving. In Proc. of the 12th Int'lConference on Distributed Computing Systems, pages 614{621, 1992.


