A Multi-View Approach for Embedded Information

System Security

Manuel Munier

LIUPPA
University of Pau - France

CRiSIS 2010
October 10-13, 2010

Montréal, Québec, Canada

Table of contents

@ Intelligent Documents
@ Context of information sharing
@ Object oriented approach

© Privacy vs. Integrity
@ Dilemma for Information System Security
@ Multi-view approach
@ Secure Versioned Repository model
o Benefits

© Conclusion & Perspectives

Intelligent Documents

Table of contents

@ Intelligent Documents
@ Context of information sharing
@ Object oriented approach

Intelligent Documents
°

Context of information sharing

@ Information sharing
o collaborative work for enterprises: reports, medical records,
tender documents,. . .
e documents can go outside the company where they have been
designed (export from IS)...and return (import updated
documents)

@ Specific needs

e multi-site enterprises, virtual enterprises, nomadic users

o usability with legacy applications: email attachment, USB
memory stick, share resource on a WebDAV server,. ..

o users can update shared documents (# multimedia DRM)

= "Classical” centralized architectures do not suit these needs

Intelligent Documents
[1e}

Object oriented approach

@ OO approach to encapsulate
o data: content of the document itself

e security control components: access control, usage control,
traceability, collaborative work management,. ..

o Usage

o to "open” such a document, the user should provide her/his
license

e security control components are configured according to user's
permissions (contained in the license)

o they check all the accesses to information (embedded IS)

o user can forward the document to another user (who handles
the document according to his own license)

Intelligent Documents
oce

This paper

@ Focus on the data model for the embedded IS

@ What this article deals with

e multi-view approach to ensure both confidentialty & integrity
o formal model to store data & calculate views
e mapping of user actions to "low level” actions

@ What is not addressed in this paper

o details of embedded components to enforce security controls

e merging of concurrent updates made on different occurrences
of the same document

o expression and implementation of security policies

Privacy vs. Integrity

Table of contents

© Privacy vs. Integrity
@ Dilemma for Information System Security
@ Multi-view approach
@ Secure Versioned Repository model
o Benefits

Privacy vs. Integrity
©0000

Dilemma for Information System Security

o Confidentiality: How to prevent the disclosure of information
to unauthorized individuals (or systems)
o breach of access control: someone can perform actions without
the proper permissions
e system behavior allows one to deduce the existence of hidden
information

o Integrity: How to avoid data to be modified without
authorization

o someone accidentally (or with malicious intent)
modifies/deletes data by side effects of a legitimate action

Privacy vs. Integrity
0®000

Example: removing nodes in data tree

@ User can access nodes
1,2,3,7 with permissions
read, update and delete

@ He's not aware of nodes
45,6

@ What happens if he decides)
to delete the node 2 7 d > (
Qu

Privacy vs. Integrity

00e00

Example: removing nodes in data tree

o If the system accepts to
remove nodes 2 and 3, what
happens for node 4 7

@ Breach of integrity: node 4
is no longer attached to the
tree

Privacy vs. Integrity

[ele]e] lo]

Example: removing nodes in data tree

@ User is not allowed to delete
node 4 (and its descendants)

o If the system refuses to
remove nodes 2 and 3 to
preserve the integrity of the
data, then user can deduce
the existence of hidden
information (nodes 4,5,6)

Privacy vs. Integrity

[elefele]]

Example: removing nodes in data tree

o If the system decides to
remove nodes 4,5,6 to
preserve the integrity, then
user deleted unauthorized
data (by side effects)

Privacy vs. Integrity
®O

Multi-view approach

@ We decouple "what the user sees” from "what is stored”

o versions & relationships
at the data store layer, all versions of each object are kept with their
own relationships

@ computation of views
a user has only a partial view of data contained in the store

@ mapping of user actions
user actions (on user’s view) have to be translated into basic actions
(on the data store): create new versions, update relationships,. . .

o Goals

o the user's actions have the intended effect on his view
o the system preserves the integrity of data (e.g. relationships
between nodes)

Privacy vs. Integrity
oe

Multi-view approach

@ User Anna can't access nodes 4,5,6

o After removing nodes 2,3 her
view only contains nodes 1,7

e Node 2' is the new version of
node 2; value "NULL" indicates
this node has been deleted and
should no longer appear in
Anna’s view

@ User Bob can access nodes all nodes

o Anna deleted nodes 2,3

e Bob's view still contains node 2
to preserve the integrity of
relationships between nodes 1,2,4

Privacy vs. Integrity
©000000

Secure Versioned Repository model

@ Purpose of our model

@ describe how to store data (versions & relationships)
@ define how to compute user views
@ translate user operations into actions on the store

@ We define a formal model

o to ensure properties on views w.r.t. user permissions

o to formally describe the operations (like advanced transaction
models for databases)

o later to put (within security policy) some kind of access/usage
control on semantic relationships

Privacy vs. Integrity
0®00000

SeVeRe: data

@ Data model

o like in CM tools we maintain multiple versions of each of data
with their version relationships

e data are not independent of each other
@ semantic relationships can denote various kinds of
associations:
tree (structural relation like “father/child” or "container/content”)
use (semantic relation like "a code source use a library”, e.g. #include)
o they are linked to versions, i.e. "data occurence” and not
"logical data”

o predicate hold(uid, ob, p) : permissions could be managed by
an external model (e.g. ACLs)

Privacy vs. Integrity
00®0000

SeVeRe: views

@ View computation

a Access Set

@ this view contains all versions (and relationships) the user can
access (he owns the permission access)

Access Set (versions only)

0% = {0i4,via € O | hold(uid, 0i4,vid,’a’)}

Privacy vs. Integrity
000®000

SeVeRe: views

Q@ View computation

b Base View Set
@ this view contains only the last version for each branch of
versions (found in the access set)
@ "NULL" versions (i.e. deleted data) are removed

Base View Set (versions only)

Lasto,d {Oid,v Z# NULL | (O,‘d S Oas) N (/E Oid,v' € o*® | Oid,v ™ Oid,v’)}

o™ = U Last,

0, €03

Privacy vs. Integrity
0000®00

SeVeRe: views

© View computation

c Extended View Set

o from the access set we reintroduce some versions not retained in
the base view set

o this aims to preserve integrity w.r.t. semantic relationships (e.g.
node 2 in the previous example)

Extended View Set (versions only)

0% = 0% U [obix € 0% | (obix — oba,) € R* A oby, € 0%}

Privacy vs. Integrity
00000e0

SeVeRe: user operations

© Mapping of user operations

a Delete

@ when a user deletes a version, this one (and its ancestors) does
not have to appear any more in the base view set of this user

Property Delete

delete,ig(obx,y) € H = V obx . (0bx,: =" obx,) = (obx,: & BaseViewSet,iq)

@ to implement the delete operation we use "low level” actions to
create a new version (with "NULL" as value) and to manage child
and semantic relationships

Privacy vs. Integrity
[elelelolote] }

SeVeRe: user operations

© Mapping of user operations
b Update

o when the user uid invoques the update,iq(obx,,, value) operation
on his view, the expected effect is the disappearance of the
version ob, , which will be replaced by the version ob, ,
(successor of oby,,) with the given value

Property Update

update,iq(obx,y, value) € H =
oby,, & BaseViewSet,iq
A 3 ob,, € BaseViewSet,iq | (oby,, = value) N (obx, > oby,)

@ to implement the update operation we use "low level” actions to
create a new version and to manage child and semantic
relationships

Privacy vs. Integrity
°

Benefits

@ This model is designed to simultaneously preserve the
confidentiality and the integrity of data

e version and relationship management

o support for structured data (semantic relationships)

e operations have the expected effects on the user’s view
regardless of what is done " behind”

o Clear separation of:
o the data structure (versions, relationships, views)
o the security policy (e.g. permissions for access control)
the model relies on the predicat hold(uid, ob, p)
o the implementation of user operations on views

Conclusion & Perspectives

Table of contents

© Conclusion & Perspectives

Conclusion & Perspectives
0

Applications

@ This work was implemented within a prototype of secure
versioned repository (SeVeRe)

@ The model has been extended to support operations on
groups of objects

= Users can store structured documents like XML (where every
node is represented by an object) and manipulate them via
routines in the checkout/checkin style at the level of a whole
document or as part of the document (and not node by node)

Conclusion & Perspectives
oce

Future works

@ Define security policies taking advantage of possibilities
offered by this model

e.g. use metadata recorded during the user’s actions for
contextual decision making (cf. Or-BAC model)

@ Extend the model to support some kind of access control on
relationships too

@ Experiment our SeVeRe prototype in the FLUOR project

o collaborative work based on intelligent documents embedding
a small information system built from our model

o http://fluor.no-ip.fr/index.php

this work was supported by the French ministry for research under the
ANR-SESUR 2008-2010 project FLUOR

http://fluor.no-ip.fr/index.php

Manuel Munier
A Multi-View Approach for Embedded Information System Security

Thank you for your attention.

Annex 1
Case study

@ 3 user groups:
group A Alice, Alfred, Anna: they develop the program
group B Bob, Bart: they develop the library
group C Charly Clark: they write the report

o they operate on 4 different resources:
specification open to members of groups A and B
library groups B and C
program groups A and C
report group C only

@ resources are not independent of each other = relationships:
- spec — prog (i.e. the program depends on the specification)
- spec — lib
- prog — report
- lib — report

Annex 1

Case study: repository content

Goup A Goup B Goup C
Alice Alfred Anna Bob Bar t Charly dark

Annex 1

Case study: access set for group A

Goup A
Alice Alfred Anna

spec 1

Annex 1

Case study: base view set for group A

Goup A
Alice Alfred Anna

spec 3

prog 2

Annex 1

Case study: extended view set for group A

Goup A
Alice Alfred Anna

spec 3

prog 2

Annex 2

User operation delete,iq(obx,y)

Property Delete
delete,ig(obx,y) € H = V oby, (0bx,; =™ obxy) = (obx,; & BaseViewSet,iq)

rep.addVersion(oby.,, NULL)
rep.addVRel({oby,y, 0by,,))

Annex 2

User operation updateyiq(obx,y, value)

Property Update

update,iq(obx,y, value) € H =
oby,, & BaseViewSet,jq
A 3 ob,,, € BaseViewSet g | (oby,, = value) A (obx,, > oby,)

rep.addVersion(oby,, , value)
rep.addVRel({oby,y, oby,,))

for each (ob, s, obx,y, dep) € rep.getSRel(oby,,) do
rep.addSRel({oba,», oby.,, dep))
done

for each (obx,y, oba b, dep) € rep.getSRel(oby,,) do
if propagateOutgoingDep(dep) = true then
rep.delSRel({obx,,, 0ba b, dep))
rep.addSRel({oby.,,, oba, s, dep))
fi

done

Annex 3
FLUOR intelligent document architecture

License

Ex: XML import/export Kernel

7’7 ¥V

Embedded
software

	Intelligent Documents
	Context of information sharing
	Object oriented approach

	Privacy vs. Integrity
	Dilemma for Information System Security
	Multi-view approach
	Secure Versioned Repository model
	Benefits

	Conclusion & Perspectives
	

	
	

