# Self-Protecting Documents for Cloud Storage Security

# Manuel Munier<sup>1</sup> Vincent Lalanne<sup>1</sup> Magali Ricarde<sup>2</sup>

Univ Pau & Pays Adour Mont de Marsan, France manuel.munier@univ-pau.fr vincent.lalanne@univ-pau.fr <sup>2</sup>BackPlan Project Communication Control Pau, France magali.ricarde@backplan.fr

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ≯ ヨ のへで

## TSIS 2012 (TrustCom)

June 25-27, 2012

Liverpool, UK

| Context of Information Sharing | Autonomic Documents | Platform Implementation | Conclusion & Perspectives |
|--------------------------------|---------------------|-------------------------|---------------------------|
| This paper                     |                     |                         |                           |

- Information system security is currently one of the most important goals for enterprises
- The problem becomes even more difficult when documents go "outside" the organization
  - → storage services are <u>outsourced</u> (eg cloud)
  - → a user wants to "checkout" a document from the information system to work <u>offline</u>
- $\Rightarrow$  Problem: how to ensure security and privacy for the document once it has left the information system ?



- We use an object oriented approach to encapsulate within the document itself some security components (access control, usage control, traceability,...)
- $\Rightarrow$  The "intelligent" document self-manages its own security  $\rightarrow$  data centric solution
- ⇒ In previous work we defined a secure autonomous document architecture for Enterprise Digital Right Management

Autonomic Documents

Platform Implementation

Conclusion & Perspectives

# Table of contents



- 2 Autonomic Documents
- O Platform Implementation
- 4 Conclusion & Perspectives

| Context of Information Sharing<br>•0000000 | Autonomic Documents | Platform Implementation | Conclusion & Perspectives |
|--------------------------------------------|---------------------|-------------------------|---------------------------|
| Context of Inform                          | nation Sharing      |                         |                           |

- Information sharing ?
  - collaborative work for enterprises: reports, medical records, design documents (with related reviews & certifications), whole project as bulk document,...
  - documents can go outside the company where they have been designed (export from IS)... and return (import updated documents)
  - we have to control how partners use the documents
    - access control (of course...)
    - usage control (cf. obligations)
      - eg, user has to read a section before writing his review
    - traceability, trust (cf. metadata, auditing,...)
  - ⇒ Digital Right Management approach with user licenses
    - $\rightarrow$  Enterprise-DRM

| Context of Information Sharing<br>○●○○○○○○     | Autonomic Documents | Platform Implementation | Conclusion & Perspectives |
|------------------------------------------------|---------------------|-------------------------|---------------------------|
| Context of Inform<br>Document security enforce | nation Sharing      |                         |                           |

- "Classic" DRM architectures
  - server ciphers the digital document & build user license
  - client side viewer deciphers the document according to rights found in the license
  - $\Rightarrow$  well suited for "classic" multimedia documents
    - content providers & read-only viewer clients
    - the document is created once and never changes
    - security policy remains the same

Autonomic Documents

Platform Implementation

Conclusion & Perspectives

## Context of Information Sharing Document security enforced on server side

- E-DRM architectures
  - documents are not "static" ⇒ updates, item deletion, new data,...
  - security policy may change during the document lifecycle



- $\Rightarrow\,$  client application has to contact the server to check access & usage rights for user actions
  - server can also provide audit facilities
    - $\rightarrow\,$  traceability allows to control how information is used & to demonstrate that it has been used as defined in the security policy
  - off-line use by leasing the document for a finite period of time
- eg Adobe LiveCycle Policy Server

Image: A matrix

 Context of Information Sharing
 Autonomic Documents
 Platform Implementation
 Conclusion & Perspectives

 Context of Information Sharing
 Specific needs
 Specific needs
 Specific needs
 Specific needs

- Our specific needs
  - users can update shared documents ( $\neq$  "classic" DRM)
  - usability with legacy applications: share resource on cloud, email attachment, USB flash drive,...
    - ightarrow users could exchange docs without having to work on a server
  - multi-site enterprises, virtual enterprises, nomadic users
    - $\rightarrow~$  using a centralized site for working (actions) is seen as a constraint
    - $\rightarrow$  information system  $\equiv$  data warehouse to manage & synchronize exchanges between users

 $\Rightarrow$  "Classic" centralized architectures do not suit these needs

Autonomic Documents

Platform Implementation

Conclusion & Perspectives

## Context of Information Sharing Object oriented approach

- OO approach to encapsulate
  - data: content of the document itself
  - security control components: access control, usage control, traceability & metadata, collaborative work management,...



- $\Rightarrow$  autonomic document self-manages its security
  - ightarrow such a document is a kind of information system on its own
  - $ightarrow \,$  data centric solution

| Context of Information Sharing<br>00000●00    | Autonomic Documents | Platform Implementation | Conclusion & Perspectives |
|-----------------------------------------------|---------------------|-------------------------|---------------------------|
| Context of Inform<br>Object oriented approach | ation Sharing       |                         |                           |

- How to "use" such a document ?
  - when "opening" the document, the user should provide her/his license
  - security control components are configured according to security rules contained in the user license
    - ightarrow permissions, obligations, metadata required,...
  - they check all the accesses to information (embedded IS)
    - ightarrow access control, usage control,...
    - ightarrow metadata recording
    - ightarrow traceability, trustworthiness management,...
  - user can then:
    - forward the document to another user (who handles the document according to her/his own license)
    - publish the amended document on the data warehouse (sync)

| Context of Information Sharing | Autonomic Documents | Platform Implementation | Conclusion & Perspectives |
|--------------------------------|---------------------|-------------------------|---------------------------|
| Context of Inform              | nation Sharing      |                         |                           |

- Project: construction of a pipeline or an oil installation
- Many documents: specifications, drawings, records of expertise, procedures, certifications,...
  - $\rightarrow\,$  relationships between documents (eg reviews and certifications binded to design documents)
- Many partners: civil engineering, pipefitters, instrumentation engineering, land surveyor, utilities,...
  - ightarrow metadata
    - traceability, validation (certify checkpoints)
    - confidence & trustworthiness indicators, impact risk of a change, performance indicators
    - in case of litigation: proof of conformity, digital forensics,...
  - $\rightarrow\,$  security policy
    - (contextual) access control
    - usage control: required actions, collective obligations,...

 Context of Information Sharing
 Autonomic Documents
 Platform Implementation
 Conclusion & Perspectives

 Context of Information Sharing
 Example: Oil & Gas project
 Sharing
 Sharing

# • Information management

- ightarrow now: papers, folders/files on "simple" file server
- $\rightarrow\,$  emerging: document registry
  - document management service (versions, configuration,...)
  - collaboration workflow applications
  - eg BackPlan<sup>1</sup>: Project Communication Control
- ightarrow future: cloud storage (& security)
  - use documents from laptops, smartphones, tablets
  - access anytime/anywhere
  - structured & complex documents, advanced security policies
  - traceability, digital forensics, indicators
  - eg self-protecting documents

<sup>1</sup>http://www.backplan.fr/

Manuel Munier : Self-Protecting Documents for Cloud Storage Security

12 / 32

Autonomic Documents

Platform Implementation

Conclusion & Perspectives

### Autonomic Documents Overall architecture

# Main components

- embedded database
  - $ightarrow\,$  contents of the document, metadata
- security kernel & security modules
  - ightarrow enforce the security policy
  - $ightarrow \,$  monitor all actions on the doc
- embedded applications & services
  - $ightarrow \,$  dedicated tools
  - ightarrow export/import mechanisms
- user license
  - ightarrow permissions, prohibitions, obligations
  - ightarrow metadata to be collected



Autonomic Documents

Platform Implementation

Conclusion & Perspectives

## Autonomic Documents Embedded database



| Context of Information Sharing | Autonomic Documents | Platform Implementation | Conclusion & Perspectives |
|--------------------------------|---------------------|-------------------------|---------------------------|
| Autonomic Docu                 | ments               |                         |                           |

- In previous work<sup>2</sup> we defined a new data model for embedded information system
  - multi-view approach to ensure both confidentialty & integrity
  - formal model to store data & calculate views
  - mapping of user actions to "low level" actions
- Dilemma privacy vs. integrity
  - $\rightarrow$  **Confidentiality**: How to prevent the disclosure of information to unauthorized individuals (or systems)
    - breach of access control: someone can perform actions without the proper permissions
    - system behavior allows one to deduce the existence of hidden information
  - $\rightarrow$  Integrity: How to avoid data to be modified without authorization
    - someone accidentally (or with malicious intent) modifies/deletes data by side effects of a legitimate action

| Context of Information Sharing            | Autonomic Documents        | Platform Implementation | Conclusion & Perspectives |
|-------------------------------------------|----------------------------|-------------------------|---------------------------|
| Autonomic Docu<br>Embedded database - Mul | ments<br>Iti-view approach |                         |                           |

- We decouple "what the user sees" from "what is stored"
  - versions & relationships
    - at the data store layer, all versions of each object are kept with their own relationships
    - data are not independent of each other ⇒ semantic relationships can denote various kinds of associations:

tree (structural relation like "father/child" or "container/content")

use (semantic relation like "a program uses a library", eg #include)

- computation of views
  - a user has only a partial view of data contained in the store
- mapping of user actions
  - user actions (on user view) have to be translated into basic actions (on the data store): create new versions, update relationships,...

| Context of Information Sharing | Autonomic Documents | Platform Implementation | Conclusion & Perspectives |  |
|--------------------------------|---------------------|-------------------------|---------------------------|--|
| Autonomic Documents            |                     |                         |                           |  |

- Benefits of this model
  - user actions have the intended effect on her/his view
  - system preserves the integrity of data (eg relationships between nodes)
- Embedding database within the intelligent document
  - nodes can be tagged with metadata
  - database is ciphered so that only the security kernel can access its content

Autonomic Documents

Platform Implementation

Conclusion & Perspectives

#### Autonomic Documents Security kernel & security modules



| Context of Information Sharing               | Autonomic Documents | Platform Implementation | Conclusion & Perspectives |
|----------------------------------------------|---------------------|-------------------------|---------------------------|
| Autonomic Docu<br>Security kernel & security | uments<br>y modules |                         |                           |

- The security kernel is the core of our architecture
  - it is the document interface with the outside world
  - all the actions performed by the users to handle the document have to be done through the security kernel
- To enforce the security policy, the security kernel relies on various **security modules** dedicated to specific tasks
  - those responsible of accepting or rejecting user actions eg access & usage control
  - those collecting and attaching metadata to the actions
    - eg who performed this action, from which IP, at what time, with which application, in which context,...
  - those calculating new information as actions go along

eg trustworthiness indicator, collaborative work management,...

| Context of Information Sharing               | Autonomic Documents | Platform Implementation | Conclusion & Perspectives |
|----------------------------------------------|---------------------|-------------------------|---------------------------|
| Autonomic Docu<br>Security kernel & security | ments<br>modules    |                         |                           |

- When the user requires the execution of an action, the security kernel performs control in two stages
  - validate the action
    - the kernel requests each security module to validate the action
      - ightarrow some modules will add information to this action (eg metadata)
      - $\rightarrow$  others will indeed accept/reject the action (eg access control)
  - Process the action
    - basic operations implementing this action are then performed on the data warehouse
    - the security kernel broadcasts this action a second time to each security module so they can achieve the associated processing
      - $\rightarrow$  logging (eg access control, usage control)
      - $\rightarrow$  adding metadata to nodes in the embedded database
      - $\rightarrow$  computation of additional information (eg trustworthiness management, collaborative work management)

| Context of Information Sharing               | Autonomic Documents         | Platform Implementation | Conclusion & Perspectives |
|----------------------------------------------|-----------------------------|-------------------------|---------------------------|
| Autonomic Docu<br>Security kernel & security | ments<br><sup>modules</sup> |                         |                           |

- Security modules we already developed
  - access & usage control
    - we use the OrBAC model
      - $\rightarrow$  permissions, prohibitions, obligations
      - $\rightarrow$  security rules can be dynamic, i.e. depending on the context
  - 2 context management
    - we can control context activation in the OrBAC model
    - how to check conditions from the context definition ?
      - $\rightarrow$  direct access to the host system (eg a global clock)
      - $\rightarrow$  metadata carried by the actions



- put metadata on actions & nodes in the embedded database

Autonomic Documents

Platform Implementation

Conclusion & Perspectives

#### Autonomic Documents License contents



イロト イポト イヨト イヨト

| Context of Information Sharing | Autonomic Documents | Platform Implementation | Conclusion & Perspectives |
|--------------------------------|---------------------|-------------------------|---------------------------|
| Autonomic Docu                 | ments               |                         |                           |

- The license contains many information:
  - identity of the server that issued the license (the licensor)
  - data about the user to which the license is granted (the licensee)
  - all the information needed to configure the various security modules
    - $\rightarrow\,$  for now, OrBAC security rules (with contexts)
    - $\rightarrow\,$  which (and how) metadata should be collected ?
    - $\rightarrow~$  what triggers must be deployed to manage contexts ?
    - $\rightarrow$  (later) what information can be automatically computed ? (eg trustworthiness indicator)
  - $\Rightarrow$  standards like XrML or ODRL do not suit our future needs

Autonomic Documents

Platform Implementation

Conclusion & Perspectives

#### Autonomic Documents Embedded applications & services



| Context of Information Sharing            | Autonomic Documents | Platform Implementation | Conclusion & Perspectives |
|-------------------------------------------|---------------------|-------------------------|---------------------------|
| Autonomic Docu<br>Embedded applications & | ments<br>services   |                         |                           |

- How to interact with the document ?
  - **export & import** mechanisms (XML for example) to manipulate information through existing applications
    - $\rightarrow$  filters at the security kernel level to format information when exporting (checkout) and to interpret them when importing (checkin)
  - plugins developed for existing applications
    - $\rightarrow$  the plugin can then talk directly with the security kernel to interact at the nodes and relationships level (finer granularity)
  - use of services and/or dedicated applications embedded in the secure document
    - eg after starting the different security components, the document can automatically start running a local WebDAV server to present the information as a tree of files/directories
    - $\rightarrow\,$  access to information can then be made from traditional applications through a WebDAV client

Autonomic Documents

Platform Implementation

Conclusion & Perspectives

# Autonomic Documents Summary



| Dlatform l             | mplamantati              | <b>~</b> P           |                                            |  |
|------------------------|--------------------------|----------------------|--------------------------------------------|--|
| Context of Information | Sharing Autonomic 000000 | c Documents Platform | n Implementation Conclusion & Perspectives |  |

- $\bullet$  Intelligent document  $\equiv$  decentralized IS
  - $\Rightarrow~$  it must bring together on the same "support"
    - a **database** (contents of the document, metadata,...)
    - several executables (security kernel, security modules, embedded services & applications)
- Embedded database
  - use of our prototype of secure versioned repository (SeVeRe)
  - model extension: support for operations on groups of objects
  - ⇒ users can store structured documents like XML (where every node is represented by an object) and manipulate them via routines in the checkout/checkin style at the level of a whole document or as part of the document (and not node by node)

|                         | 00000000000000 | 000 | 00 |  |
|-------------------------|----------------|-----|----|--|
| Platform Implementation |                |     |    |  |

- Security concerns
  - Java  $\Rightarrow$  document can run on various OS (MS Windows, Linux, Android,...)
  - ciphering to protect embedded database, license contents,...
- Actual implementation
  - an easy solution: a USB flash drive that represents the document and can be exchanged (physically) between users
    - ⇒ standard USB flash drives with an autorun configuration to launch Java programs
  - intelligent document as a single file (JAR archive)
    - $\rightarrow$  more user friendly: 1 file in the cloud/on a USB flash drive, 1 email attachment, . . .
    - $\Rightarrow~$  workaround to "update" a JAR file  $\circledast$
  - $\Rightarrow$  Next step: develop a **cloud storage service**

| Platform            | Implem      | antation            |                                |                           |
|---------------------|-------------|---------------------|--------------------------------|---------------------------|
| Context of Informat | ion Sharing | Autonomic Documents | Platform Implementation<br>00● | Conclusion & Perspectives |

- Platform tested in the FLUOR project<sup>3</sup>
  - convergence du contrôle de FLux et d'Usage dans les ORganisations
  - $\rightarrow\,$  collaborative work based on intelligent documents embedding a small information system built from our model
    - http://fluor.no-ip.fr/index.php
- Future work
  - policy management
    - security policy update ⇒ license management (revocation list,...) to propagate new security rules

#### • risk analysis

- eg ISO/IEC 27005:2011 information security risk management
- ightarrow decentralized IS: benefits, but also new vulnerabilities...

 $^3$  work supported by the French ministry for research under the ANR-SESUR 2008-2011 project FLUOR  $\ge$  9  $\odot$  0

| Context of Information Sharing | Autonomic Documents | Platform Implementation | Conclusion & Perspectives<br>●○ |
|--------------------------------|---------------------|-------------------------|---------------------------------|
| Contribution                   |                     |                         |                                 |

## • Self-Protecting Documents for Cloud Storage Security

- E-DRM architecture using autonomic documents
  - → users only need a drop point (eg cloud storage service) only for checkout/checkin/synchronize operations
     → documents ensure their own security (data centric solution)
  - $\rightarrow\,$  users can exchange docs without going through the server  $_{eg}$  email attachment, USB flash drive
  - → documents can carry dedicated applications & services eg service to present document contents as a filesystem, business applications,...
- enterprise context
  - structured & complex documents
  - working documents  $\Rightarrow$  users can update the contents
  - ${\, \bullet \, }$  relations between the partners are well defined  $\Rightarrow$  advanced security policy definition

| Context of Information Sharing | Autonomic Documents | Platform Implementation | Conclusion & Perspectives<br>○● |
|--------------------------------|---------------------|-------------------------|---------------------------------|
| Future Work                    |                     |                         |                                 |

- Perspectives
  - legal issues & privacy concerns
    - which (and how) metadata can be collected ?
    - what information can be automatically computed ?
    - $\Rightarrow\,$  the contents of the license gives the terms of use of the document that the user must agree
  - risk management
    - autonomic documents  $\Rightarrow$  distributed information system
    - $\rightarrow\,$  advantages & disadvantages, new vulnerabilities, . . .
    - $\rightarrow$  ISO/IEC 2700x risk analysis
  - programming issues
    - implement new security modules eg trustworthiness management, collaborative work management
    - policy management

update security rules, revoke licenses,...

Autonomic Documents

Platform Implementation

Conclusion & Perspectives

#### Manuel Munier, Vincent Lalanne, Magali Ricarde Self-Protecting Documents for Cloud Storage Security

## Thank you for your attention.

manuel.munier@univ-pau.fr





http://www.backplan.fr/