
Using Relax Operators into an MDE Security Requirement
Elicitation Process for Systems of Systems

Nicolas Belloir
LIUPPA - University of Pau

BP1155, 640014 Pau, France
nicolas.belloir@univ-pau.fr

Vanea Chiprianov
LIUPPA - University of Pau

BP 201, 40004
Mont-de-Marsan, France

vanea.chiprianov@univ-pau.fr

Manzoor Ahmad
LIUPPA - University of Pau

BP1155, 640014 Pau, France
manzoor.ahmad@univ-pau.fr

Manuel Munier
LIUPPA - University of Pau

BP 201,40004
Mont-de-Marsan, France
manuel.munier@univ-pau.fr

Laurent Gallon
LIUPPA - University of Pau

BP 201,40004
Mont-de-Marsan, France
laurent.gallon@univ-pau.fr

Jean-Michel Bruel
CNRS/IRIT

F-31062 Toulouse University,
France

bruel@irit.fr

ABSTRACT
Systems of systems (SoS) are large-scale systems composed
of complex systems with difficult to elicit and model emer-
gent properties. One of the most significant challenges in
the engineering of such systems is how to elicit their non-
functional requirements such as security. In this proposal
paper we introduce a Model Driven Engineering (MDE) se-
curity requirement process for SoS. It is based on the Relax
language to define invariant and relaxed security require-
ments. This enables taking into account security concerns
early in the requirements phase of the SoS. We illustrate our
process on a maritime safety and security case study.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: System modeling languages—
Software development methods, security, Requirements anal-
ysis; Software and its engineering [Software notations
and tools]: System description languages—System mod-
eling languages; Security and privacy [Software and ap-
plication security]: [Software security engineering]

Keywords
Systems of Systems, Requirement Engineering, Security, MDE

1. INTRODUCTION
Systems-of-Systems (SoS) are large-scale concurrent and

distributed systems, comprised of complex systems [9]. Sev-
eral definitions of SoS have been advanced, some of them
historically reviewed in e.g. [7]. SoS are complex systems
themselves, and thus are distributed and characterized by
interdependence, independence, cooperation, competition,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SeSos ’14 Viena, Austria
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

and adaptation [5]. Characteristics that have been proposed
to distinguish between complex but monolithic systems and
SoS are [13]: operational independence of the elements, man-
agerial independence of the elements, evolutionary develop-
ment, emergent behavior, geographic distribution.

The security of such SoS is essential, as the vulnerabilities
of one composing system are cascaded into the other systems
composing the SoS, resulting in possible debilitating attacks
[12]. Most SoS that have been studied are in the defense and
national security domain, as a systematic literature review
[10] identifies for example.

The characteristics of SoS raise specific challenges to their
security engineering, identified e.g. in [4]. In this work
we focus on some of the security requirements challenges:
identifying SoS security requirements, security requirements
modeling and requirements as source of variability.

Security requirements engineering for systems is still strug-
gling to provide a complete integration with the functional
and the other non-functional requirements [14]. For SoS,
there are relatively few approaches, e.g. [6].

On the other hand, we previously realized a study in the
field of adaptative systems [2, 3]. In this study we defined a
process allowing (i) identifying and adapting some non func-
tional requirements, (ii) focusing on those adapted require-
ments into an elicitation requirement process, (iii) trans-
forming them by Model-Driven Engineering (MDE) tools
and methods into a system specification expressed in SysML
[16], and (iv) finally verifying this process using formal meth-
ods. In this process, we used Relax [18], a requirements en-
gineering language for Dynamic Adaptive Systems (DAS),
where explicit constructs are included to handle uncertainty.

In this paper, we propose to adapt this previous work fo-
cusing on security properties of SoS. More specifically, we
propose using Relax to identify security properties that
would be contextually adapted. These properties are trans-
formed using MDE methods and tools towards both SysML
specification models and the security verification method
OrBAC. We illustrate the process with a maritime case study.

This paper is structured as follows. Section 2 presents a
motivating example for our proposal. Section 3 presents Re-
lax and its application to the case study. Section 4 presents
an MDE process focusing on relaxed properties allowing
to generate both SysML system specifications and OrBAC

rules from user textual requirements. Finally Section 5 con-
cludes and presents some perspectives.

2. CASE STUDY
We present here an SoS case study in the domain of Mar-

itime Safety and Security, inspired by the one described
in [17]. SoS in this domain have the task of monitoring
a given maritime area and taking appropriate actions in
case unwanted events take place. The SoS is constituted
from five organisations: three military navies of Danemark,
Netherlands and Italy respectively, DK Navy, NL Navy and
IT Navy, the Netherlands coastguard NL CG and the Eu-
ropean navy EU NAVFOR which regroups ships from the
three national navies, which are its members. Each national
navy has three types of ships: Frigate, Patrol and Surveil-
lance And Reconnaissance (SAR) and a Command and Con-
trol System (C2S). The Netherlands coastguard has only one
type of ships - SAR, and a C2S. The European navy has a
general type of ships - EU Vessels, which contains four types
of vessels: EU Frigate, EU Patrol and EU SAR which cor-
respond to the ship types from the three national navies,
and the type EU Law enforcement, which is used to model
the ships which, at a certain moment, have the task of pre-
venting/figthing against crime. The European C2S is the
Maritime Security Center (MSC), which will verify if the
different ships have the rights to access information. Infor-
mation is of two types: public and private.

The textual security requirements of this case study, fo-
cused on the MSC, are reprised here as described in [17]:

Msc1: Operators on vessels of the EU NAVFOR can ac-
cess public information about the ships transiting in the op-
eration area.

Msc2: Operators on vessels of the EU NAVFOR which
are assigned to the prevention of criminal activities (or sim-
ilar tasks) can access additional “off the record“ information
about ships which has been gathered during the operation.

Msc3: Operators on SAR vessels certified by EU NAVFOR
members can access all the information about a ship in case
of emergency.

These security requirements could be verified with a for-
mal method like OrBAC [15]. OrBAC enables writing se-
curity rules as first order logic predicates to describe rights
like permissions or prohibitions. For example, a permission
predicate has as parameters: the organization for which the
rule is written, the role in that organization to which the
role applies, the type of access the role has, the resource to
which the role has access and optionally the context.

If we verified the three requirements of our Maritime SoS
with OrBAC, we would model them for example like this :

Msc1 : permission(EU NAVFOR, EU Vessels, read info,
public info, default context);

Msc1-2 : prohibition(EU NAVFOR, EU Vessels, read info,
private info, default context);

Msc2 : permission(EU NAVFOR, EU Law enforcement,
read info, private info, default context);

Msc3 : permission(EU NAVFOR, EU SAR, read info, all info,
emergency);

Please note that, consistently with the ”military spirit”, we
describe not only the permissions, but also the prohibitions.
This results in the rule Msc1-2. On these rules, OrBAC
detects two abstract conflicts, cf. Figure 1, between: (i)
Msc1-2 and Msc3, due to the fact that we give both a per-
mission and a prohibition on the private information, in two

Figure 1: Conflicts detected by OrBAC

different contexts; (ii) Msc1-2 and Msc2, due to the fact
that the role EU Law enforcement is modelled in OrBAC
as a subrole of the EU Vessels role, and thus it has both a
permission and a prohibition to read private information.

In the rest of the paper, we propose to reuse adapta-
tion methods in order to specify which security requirement
would be adapted in order to limit the conflicts between
security requirements. Indeed, in a precise context, some
security requirement would be lower without presenting a
danger for the complete system. But, we must be able to
specify it early to take it into account both in the system
specification and the security management environment.

3. RELAXING SECURITY PROPERTIES

3.1 Relax presentation
Relax is a requirements engineering language for Dy-

namic Adaptive Systems (DAS), where explicit constructs
are included to handle uncertainty. Typically textual re-
quirements prescribe behavior using a modal verb such as
SHALL that defines functionality that a software system
must always provide. For DAS however, it is not always
possible to achieve all of those SHALL statements; or we
may allow for trade-offs between SHALL statements to relax
noncritical statements in favor of other, more critical ones.
Therefore Relax identifies two types of requirements : one
that can be relaxed in favor of other ones called variant or
relaxed and other that should never change called invari-
ant. This is done through the inclusion of an alternative,
temporal or ordinal Relaxation modifier that will define the
requirement as relaxable.

The Relax operators are designed to enable requirements
engineers to explicitly identify requirements that should never
change (invariants) as well as requirements that a system
could temporarily relax under certain conditions. Each of
the relaxation operator defines constraints on how a require-
ment may be relaxed at run-time. In addition, it is impor-
tant to indicate what uncertainty factors warrant a relax-
ation of these requirements, thereby requiring adaptive be-
havior. This information is specified using the MON (mon-
itor), ENV (environment), REL (relationship) and DEP
(dependency) keywords. The environment properties cap-
ture the state of the world i.e., they are characteristics of
the operating context of the system. Often, however, envi-
ronmental properties cannot be monitored directly because
they are not observable. The MON keyword is used to de-
fine those properties which are directly observable and which
may contribute information towards determining the state
of the environment. The REL keyword is used to specify in
what way the observable (given by MON) can be used to
derive information about the environment (given by ENV).
Finally requirements dependencies are delimited by DEP, as
it is important to assess the impact on dependent require-
ments after relaxing a given requirement.

Relax has been used for the requirements definition of
different DAS. In [2], we have applied Relax on the re-
quirements of an Ambient Assisted Living (AAL) system.
We start by applying the Relax process on Functional Re-
quirements and Non Functional Requirements of the AAL.
The Relax process results in the distinction of relaxed re-
quirements which are adaptable and invariant requirements
which are fixed. We then model these requirements using
goal oriented approach. To go one step further, we applied
Relax on another Barbados Car Crash Crisis Management
System (bCMS) case study. In [3] we have compared the
Relax based requirements definition approach with other
approaches and we concluded that the approach based on
Relax better helps in identifying the uncertainty factors
associated with DAS.

3.2 Application of Relax to the case study
We think that Relax can be used in defining the secu-

rity requirements of an SoS. For illustration, we model the
textual requirements from the maritime case study.

As detected previously by OrBAC, Msc1-2 is in conflict
with Msc2 and respectively Msc3. In order to avoid this,
we need to relax Msc2 and Msc3. The relaxed version is
given below with its associated uncertainty factors : we have
applied the MAY and OR Relax operators. The ENV
operator specifies the context in which the requirement is
concerning. The MON operator specifies some information
monitored by the requirement. The REL operator specifies
relationships such as those illustrated. The DEP operator
is issued from positive and negative impacts in Kaos (see
next section).

Private information MAY be read by ships that are exe-
cuting a task of fighting against crime OR by SAR ships
in case of emergency.

• ENV : fight against crime (FAC), access to private
information (API)

• MON : Aggression level (AL), Access rules (AR)

• REL : FAC = (AL > 10?true; false);API =
select ∗ from AR where . . .

• DEP : it has a positive dependency on Msc1-2.

Detecting conflicts between security rules is not obvious.
We argue that this would be realized with systems stakehold-
ers and requirement engineers using existing security meth-
ods. Using Relax is useful for specifying within a dedicated
language the adaptation and its impact.

4. A COMPLETE MDE BASED PROCESS

4.1 General Process Overview
Considering security requirements through the entire re-

quirement engineering process needs dealing with them from
textual requirements to system specification. In our previous
work, we have showed that it is important to use some well
established engineering methods like GORE (Goal Oriented
Requirement Engineering). In this context, after treating
security requirements with Relax, we propose to use Kaos
[11], a GORE method, to help the future system stakehold-
ers to better define the security goals of the system. Once the
system goals have been established, we argue it is important

Figure 2: General Requirement Process Overview

to translate them into the system specification described in
SysML. It is also important to translate them towards Or-
BAC, to detect if other conflicts may exist. We propose
to do this translations using MDE methods. The general
process overview is presented in Figure 2.

4.2 MDE Concerns
Model Driven Engineering allows transforming a model

m1 conforming to a metamodel MM1 into another model
m2 conforming to another metamodel MM2, using transfor-
mation rules. Transformation rules specify how each model
element from m1 would be traduced into a corresponding
other model element of m2. These transformations would
be realized automatically or manually depending of the tech-
nology maturity, the need of a human decision, . . .

Figure 3 shows the different metamodels used in our ap-
proach and the set of transformation rules (represented by
diamonds). Metamodels exist for most of these languages:
for Relax in [18], for Kaos in [11] and SysML in [16]. We
explored transformation rules between these 3 metamodels
in [1]. Finally, transformation rules between Kaos and Or-
BAC metamodels were explored in [8].

Despite the fact that all metamodels and transformations
exist, it is important to show that the complete process is
occurring correctly. We have not yet studied the complete
transformation process but we are currently working on this.

4.3 Discussion
Our MDE process pushes the verification of security early

to the requirements phase of the development life-cycle. Thus,

Figure 3: Metamodels and Transformation Chain

issues like conflicts between security policies can be caught
early and costly re-design and re-implementation can be
avoided. The proposal is especially beneficial to SoS, as it
can capture early conflicts between security policies which
may be fine at the composing system level, but when they
interact at the SoS level, conflicts may emerge.

5. CONCLUSIONS AND PERSPECTIVES
In this paper, we proposed a process for security require-

ments for SoS in order to better consider their security dur-
ing the requirement elicitation process. The main benefit
consists in identifying some conflicting rules as early as pos-
sible and adapting them when it is possible. This adapta-
tion is realized using Relax, and the adapted properties
are transformed both in a specification model and in Or-
BAC rules. Additionally, we pass via Kaos models to help
system stakeholders and requirement engineers to identify
system security goals.

It is important to note that this is ongoing work. De-
spite metamodels and transformation rules existing, we are
studying more precisely their applicability to security con-
cerns. Moreover, we are studying how Relax and security
methods like OrBAC would mutual enrich themsleves. More
precisely, we expect that Relax operators are not sufficient
in the security context. We think about adding specific op-
erators that make the difference between the context and the
role concepts. In OrBAC, concepts to account for Relax
operators SHALL, MAY, OR, AND would probably need to
be added. Lastly, our process provides two models. We need
to be able to verify that both models are consistent. We are
working on a verification process allowing to do this, using
OMEGA2IFx as described in [3].

6. REFERENCES
[1] M. Ahmad. Modeling and Verification of Functional

and Non Functional Requirements of Ambient, Self
Adaptive Systems. PhD thesis, University of Toulouse
Mirail, France, 2013.

[2] M. Ahmad, J. Araújo, N. Belloir, R. L. Jean M. Bruel,
Christophe Gnaho, and F. Semmak. Self-Adaptive
Systems Requirements Modelling: four Related
Approaches Comparison. In Comparing
Requirements Modeling Approaches Workshop
(CMA@RE), RE 2013, Rio de Janeiro Brazil, 2013.

[3] M. Ahmad, I. Dragomir, J. M. Bruel, I. Ober, and
N. Belloir. Early Analysis of Ambient Systems SysML
Properties using OMEGA2-IFx. In 3rd International
Conference on Simulation and Modeling
Methodologies, Technologies and Applications, 2013.

[4] V. Chiprianov, L. Gallon, M. Munier, P. Aniorte, and
V. Lalanne. Challenges in Security Engineering of
Systems-of-Systems. In Conference de l’Ingenierie
Logiciel (CIEL), Paris, France, 2014.

[5] C. H. Dagli and N. Kilicay-Ergin. System of Systems
Architecting, pages 77–100. John Wiley & Sons, 2008.

[6] A. Fuchs and R. Rieke. Identification of security
requirements in systems of systems by functional
security analysis. In A. Casimiro, R. de Lemos, and
C. Gacek, editors, Architecting Dependable Systems
VII, volume 6420 of LNCS, pages 74–96. 2010.

[7] A. Gorod, R. Gove, B. Sauser, and J. Boardman.
System of systems management: A network
management approach. In System of Systems
Engineering. IEEE Intl Conf. on, pages 1–5, 2007.

[8] M. Graa, N. Cuppens-Boulahia, F. Autrel, H. Azkia,
F. Cuppens, G. Coatrieux, A. Cavalli, and
A. Mammar. Using requirements engineering in an
automatic security policy derivation process. 4th
SETOP International Workshop on Autonomous and
Spontaneous Security, 2011.

[9] M. Jamshidi. System of Systems - Innovations for 21st
Century. In Industrial and Information Systems, 2008.
ICIIS 2008. IEEE Region 10 and the Third intl Conf
on, pages 6–7, Dec 2008.

[10] J. Klein and H. van Vliet. A systematic review of
system-of-systems architecture research. In Proc. of
the 9th Intl ACM Sigsoft Conference on Quality of
Software Architectures, QoSA ’13, pages 13–22, 2013.

[11] A. V. Lamsweerde. Requirements Engineering: From
System Goals to UML Models to Software
Specifications. Wiley, 1st edition edition, 2009.

[12] S. Lukasik. Vulnerabilities and failures of complex
systems. Int. J. Eng. Educ., 19(1):206–212, 2003.

[13] M. W. Maier. Architecting principles for
systems-of-systems. Systems Engineering,
1(4):267–284, 1998.

[14] D. Mellado, C. Blanco, L. E. Sánchez, and
E. Fernández-Medina. A systematic review of security
requirements engineering. Comput. Stand. Interfaces,
32(4):153–165, June 2010.

[15] A. Miége. Definition of a formal framework for
specifying security policies. The Or-BAC model and
extensions. Ecole Nationale Supérieure des
Télécommunications, 2005.

[16] OMG. Systems Modeling Language Specification V1.3.
Technical Report formal/2012-06-01, Object
Management Group, 2012.

[17] D. Trivellato, N. Zannone, M. Glaundrup,
J. Skowronek, and S. Etalle. A Semantic Security
Framework for Systems of Systems. Int. journal of
cooperative information systems, 22(1):1–35, 2013.

[18] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng,
and J. M. Bruel. RELAX: Incorporating Uncertainty
into the Specification of Self-Adaptive Systems. In
Proc. of the IEEE Intl Requirements Engineering
Conference, pages 79–88, 2009.

