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Abstract—Internet of Things (IoT) is one of the key technolo-
gies in the industry 4.0 era and promotes the interconnection
of numerous data sources in several sectors such as ecology,
agriculture, or healthcare. Meanwhile, each entity within these
connected environments carries its unique requirements and
individual goals. For connected environments to gain greater
legitimacy among end users, service-oriented systems must adopt
a new paradigm that allows end users to move from being
passive consumers to actively participate in monitoring their
own data at different stages of its lifecycle. In this context, a
usage model based on ontological reasoning can be integrated
within a data provenance mechanism to help create a trust
worthy environment. In this paper, we introduce a vision for
democratizing service-oriented systems. We discuss potential
new directions that need to be pursued in the area of data
management. Then, we review existing schemes applied in IoT
data provenance and rely on the requirements to discuss their
strengths and weaknesses. Finally, we summarize a number of
potential solutions to direct future research.

Index Terms—Data Provenance, Internet of Things, Rule
Manager, Data Governance

I. INTRODUCTION

With more than 500 billion objects connected to the Internet
by 2030 according to Cisco [1], IoT represents an undeniable
growth factor for both small and medium-sized enterprises
(SMEs) and multinationals. Multiple common devices previ-
ously inactive will be able to communicate through sensors
connected to the Internet. As a result, numerous new uses are
emerging in diverse fields like industry, health, logistics and
mobility. This IoT revolution impacts all sectors of activity
and aims at facilitating decision-making in a wide range of
fields such as intelligent diagnosis, predictive maintenance and
asset optimization. In this context, multiple authorized parties,
namely data producer, data requesters, and data brokers are
involved in the process and each one of them aims to use the
shared data in order to achieve its own goals. For instance,
different entities can share their energy consumption to facil-
itate the energy provider’s ability to forecast its production.
Data owners and data requesters can be individuals, a group
of individuals, or private/public organizations.

However, the distributed nature of IoT networks leads to the
recognition of security and privacy as being among the key
challenges in IoT domain. For instance, popular encryption
protocols and privacy-preserving methods, such as ECDSA,
have been shown to be highly expensive when run on devices
with limited computing capabilities in IoT domain [2]. More-
over, due to the lack of IoT data management, data requesters
don’t have the ability to trace the source of the asset as well
as its processing history to tailor it to their business needs.
Furthermore, the data owner has little to no control over his
IoT data once shared, and therefore quickly lose his ownership.
All this creates a dysfunctional IoT environment that lacks
mutual trust between its agents and can disrupt the envisioned
services.

Despite data being rightfully recognized by the community
as the essence of the future, only few consider it as an asset
with a measurable economic value. To have a good manage-
ment of the information system within an organization means
to be able to control information in a context where various
entities are interconnected and frequently exchange each other
resources. It is then a priority to maintain control of the
information possessed, even when it is shared in an external
domain. In the context of risk management, three main criteria
are used to evaluate data security: confidentiality, integrity and
availability. In [3], authors define ”controllability” as a new
necessary criterion to add along the existing ones, and whose
objective is to ensure an organization’s control over the data
it manipulates. An implementation of this new process is yet
to be built and a combination of IT security mechanisms is to
be considered.

Data provenance provides a potential solution to address the
issues mentioned above by storing information about the origin
of the data, the transactions performed on the data, and the
history of the processing from its initial source to its current
state. Thus, it allows:

a) Ascending traceability: data requesters to trace the
origin of a data item and determine whether it meets the
technical and legal requirements of a given activity and to
assess its quality.
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b) Descending traceability: data providers to be in-
formed where their data is distributed and in which processes
it’s being involved, therefore not completely lose their owner-
ship.

Current Data provenance solutions do not cover all the
privacy demands, such as retention time, disclosure limitations,
etc., which are set by the privacy standard [4] and legisla-
tion [5] to preserve the privacy of the users. In future work,
the privacy obligations are to include the requirements that
must be met by all concerned parties to ensure that privacy is
maintained throughout the life cycle of IoT data.

Relying on the fundamentals set by the European General
Data Protection Regulation (GDPR) [5], our goal is to ensure
that privacy requirements are respected when dealing with
shared data collected by IoT devices. The rest of this paper is
organized as follows. Section 2 introduces Internet of things
architecture and knowledge representation based on semantic
modelisation. In section 3, current data provenance solutions
are presented with the existing techniques and models. Several
open issues are brought up in section 4 as well as future
directions. Section 5 concludes the paper and presents a larger
context.

II. BACKGROUND
A. Internet of things

Several architectures are proposed to model IoT, such as
IoT-A [6] and IIRA [7]. We base our work on the architecture
proposed by Wu [8], which splits IoT systems into 5 layers.
As shown in figure 1, the Perception layer consists of physical
objects that are controlled by sensor and actuator devices
that aim to collect data. The sensor data is then transmitted
to the Middleware layer through the Network layer using
gateways and routers. Information analysis is realized in the
Middleware using advanced data processing technologies. The
analyzed data is represented in the Application layer featuring
the interface between IoT system and users. Finally, Business
layer provides management tools in order to control the overall
IoT system. The primary purpose is to achieve an autonomous
decision-making process, which returns commands for lower
layers to carry out actions.

An information is the processed form of collected data.
Well-known security and privacy techniques such as encryp-
tion, access control, and anonymization has been applied
to ensure the preservation of raw data captured during the
first layer of the architecture and avoid security attacks.
At each stage of IoT data life cycle within those layers,
conventional security mechanisms are implemented to preserve
the efficiency and integrity of the service. Alshahrani in [9]
summarize the existing techniques for data security used in
each layer, namely authentification procedures, encryption
mechanism, and usage control. However, much less work is
targeted towards aspects regarding information quality and its
governance. In this context, and as shown in figure 1, our
approach aims to enhance existing works with mechanisms
that allow the improvement of information management by
introducing new components to manage information security,

Fig. 1. Global IoT system architecture and security mechanisms

assess data quality and trustworthiness, and monitor data
exploitation and data sharing by the various parties involved
in the ecosystem. Therefore, we aim to complement existing
practices by taking into account not only the transmission
security aspects, but the preservation of information quality
present in the collected data. In order to do this, we introduce
in the processing layer semantics-based rule manager and data
provenance utilities to be integrated in a decentralized global
architecture. In the application layer, we propose a shared
data monitoring mechanism based on these tools to allow
IoT actors to monitor their shared data, as well as the data
consumer to know where available data comes from and assess
its relevancy.

B. Knowledge representation based on semantic modeling

Privacy threats and legislative constraints require both the
data owner and the requester to maintain the confidentiality
of shared data. For this purpose, and in a similar approach as
a license, data owners set the requirements that other parties
need to respect to be able to use their assets. However, match-
ing the data owner’s preferences with the requester’s demand
for access entails using the same vocabulary that describes
the privacy requirements. This correspondence allows for the
creation of a common policy that can be enforced to protect
the privacy of the data owner of IoT environment. These
challenges are not limited to private data but have a broader
coverage and concerns any sensible data.

To express this vocabulary, various ontologies for preserv-
ing privacy in IoT have been built, namely semantic sensor
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network ontology [10] that portrays IoT resources but fails to
consider privacy policies, or privacy-aware access control [11]
that concentrates solely on who can access the generated
IoT resource data at the time of processing. Following this
lead, constructing a unified knowledge representation based
on semantic modeling is a necessity for the achievement of
the creation of a common policy process.

Afterwards, from the moment the resource is requested and
deployed, there is no way to guarantee the data owner will stay
updated to whether its asset is correctly used or if the entity
at the receiving end follows the established policies agreed
on. In this case, the challenge is to guarantee that the external
party behaves as expected when the resource is in her domain
and that the mutual reliance on each entity is preserved. By
recording data origins and the history of data generation and
processing, data provenance can answer critical privacy issues
and ensure “data quality” assertion.

III. DATA PROVENANCE IN IOT

Data provenance is defined as all the relevant information
about the process of data production and evolution through
time, and includes both the static and evolving origins of
the data [12]. With the provenance information collected, we
can determine the originating node that produced the data,
the immediate node through which the data passed, agents
involved in, and the operations performed on it. Sometimes
we can even find out the time and location of the behaviors
performed on the data. Thus, data provenance is widely
applied in both scientific and business domains.

A. Models

[13] constructed a solution called PROV, based on five
requirements that must be met to enable provenance composi-
tion. First, a minimal solution is identified by which a message
identifier is shared by its sender and receiver, to enable a
form of composition that meets the two first requirements.
The minimal solution is then progressively enriched with
bundles and topicIn property, attribution, and the pingback
mechanism to satisfy the remaining requirements. Although
the solution proposed here fills existing data traceability gaps,
it still leaves open a number of practical issues, including
system interoperability.

Along the same lines, [14] defines a comprehensive
UML2PROV approach. First, a mapping strategy is established
between class diagrams to models. Then, an improvement of
the first prototype is proposed using a model-driven develop-
ment based approach, which not only implements the global
mapping patterns, but also provides a fully automatic way
to generate the artifacts for provenance collection. However,
the solution as presented cannot be applied to a distributed
system. An ontology-based data provenance model is proposed
in [15]. The model describes the context of the creation or
modification of data points, including information about the
agents involved, the execution context, time, and location.
Furthermore, the model captures the dependency relationships

between data points and does not depend on the execution
models of IoT applications.

B. Architectures

Privacy preservation approaches can be categorized into
three types of architectures.

1) Centralized architectures: Centralized schemes are
based on one or more central nodes where data is kept to
ensure privacy preservation before delivering the data to data
consumers.

An anonymous privacy-preserving scheme called
APPA [16] handles privacy-preserving data aggregation
in the fog-enhanced IoT environment (fog computing).
The APPA scheme consists of five entities, namely smart
devices, a fog node, a public cloud server, a trusted certificate
authority and a local certificate authority. The two authorities
are independent organizations responsible for managing the
certification of the system. The smart devices collect and
send data to the fog node, which stores and aggregates the
received data using the Paillier Cryptosystem system. Then,
it transmitted the aggregated data to the public cloud server
that processed the data to better serve the users. In addition,
the anonymity and authenticity of the device is guaranteed by
a pseudonym and a pseudonym certificate.

Data aggregation is also used for privacy preservation.
Lu et al. proposed a lightweight aggregation scheme, called
LPDA [17]. This uses one-way hash chain techniques to
allow a fog node to filter out fake data by performing source
authentication at the network edge. In addition, LPDA com-
bines Paillier homomorphic encryption and Chinese remainder
theorem to aggregate data from hybrid IoT devices into a
single ciphertext. LPDA consists of four actors, namely IoT
devices, a fog device, a control center, and a trusted authority.
A set of IoT devices periodically report their data to a fog
device, which aggregates the received data and forwards it to
the control center, which can perform data analysis on the
aggregated data. The role of the trusted authority is to assign
and manage keys to all IoT devices, the fog node and the
control center.

The main problem with centralized approaches is that all
processing and privacy-preserving tasks are handled by a
single node. Thus, if a node is compromised, all sensitive user
data is impacted.

2) Distributed architectures: Dorri et al. proposes a
lightweight blockchain optimized for resource-constrained de-
vices [18]. The proposed solution eliminates mining and
thus has no additional delays in processing the generated
transactions. Under the proposed model, only authorized users
can access and control home devices. In [19], the same authors
applied their lightweight blockchain for a smart home. In
each home, multiple IoT devices (e.g., smartphones, personal
desktops, and sensors) are connected to the same network.
In addition, each home is equipped with a powerful, online
resource device known as the home miner. The latter is
responsible for processing all transactions inside the house.
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[20] introduces innovative techniques for IoT data privacy
preservation, using multiple cloud data warehouses to protect
the privacy of IoT data. The objective of the technique is
to decompose IoT data, store it in multiple warehouses, and
reaggregate it when a consumer requests it without exposing
anything beyond what is allowed. The solution avoids the
single point of attack/failure problem by distributing the sys-
tem and using Paillier’s Cryptosystem properties, which allows
recovery of analyzed IoT data without exposing the raw data.

3) N-tier architectures: [21] proposes a lightweight and
anonymous authentication scheme for wearable devices with
the help of a cloud server. The scheme enables mutual au-
thentication while keeping the anonymity of IoT devices. Only
lightweight cryptographic operations including hash function
and exclusive-or operations are employed. The proposed sys-
tem can be divided into three phases: initialization, pairing,
which allows the smartphone and wearable device to know
about each other’s existence, and authentication, which builds
the session key for transmitting information after pairing.
However, the authors consider that the cloud server was
trustworthy due to its own security mechanism. Thus, the cloud
server stores all critical identity information about both the
user’s mobile device and smartphone. In the same context,
PrivTAM is a system for calculating Television Audience Mea-
surement (TAM) indices while preserving their confidentiality
thanks to SmartTV technology. PrivTAM [22] receives as
input the viewing records of users’ SmartTVs and produces
TAMs by performing secure multi-party calculations. The
smartTVs actually communicate over the Internet to compute
the aggregated metrics. SSL/TLS sockets are used to secure
the communication between the different entities. However,
PrivTAM requires the intervention of a central third party,
called a TAM aggregator, which coordinates the calculation
of TAMs, verifies the validity of the records, collects the
encrypted results, and provides the compensation to the par-
ticipants.

C. Data provenance techniques

1) Semantic-based techniques: These mechanisms aim at
representing a domain in a standard format using a common
notation in order to overcome the problem of heterogeneity
in a given domain. Two objectives can be ensured by onto-
logical modeling techniques, namely domain description and
reasoning by inference.

In order to enable information security and privacy for
smart spaces, [23] proposed a security framework, which is
composed of various components collaborating together to
support different aspects of security, such as authentication,
authorization and access control. In addition, a role-based and
context-aware access control scheme is proposed, which is
modeled using ontological techniques and the Web Ontol-
ogy Language (OWL) and implemented by the C Language
Integrated Production System (CLIPS) rules. In this model,
roles are assigned to users by the administrator when they
register in the system. At runtime, privacy rules are executed

to grant or deny access based on the user’s role and contextual
information.

In another context, [23] proposes ORDM, an ontology
based resource description model, to describe resources in IoT
environment. These resources are described by the attribute,
state, control, historical information, and privacy classes. The
Attribute class defines information inherent to the device, such
as device types, model, and range of sensed values. The data
description is done in the State class, which provides the
current data captured by the sensor with its associated data
unit. The Privacy class protects the device from illegal access
or control. A smart desktop application based on the ORDM
is implemented for evaluation. However, both ORDM and the
previously presented model do not provide flexible access con-
trol to the captured data. Indeed, the users who can access IoT
resources are fixed in the proposed ontology without any clear
reasoning or criteria. Moreover, the authors did not address the
sharing of data resources during the data processing phase. In
addition, only access and control permissions are considered
as privacy requirements. The authors did not consider the
rest of the confidentiality requirements, such as specifying the
purpose, retention, and limiting disclosure.

2) Blockchain-based techniques: Based on the smart con-
tracts, BlockPro [24] use each PUF (Physical unclonable
function) to produce a single response for each device and uses
it to identify the source of the data. Furthermore, a blockchain
with two smart contracts is implemented to guarantee the
reliability of the data. The first verifies the sourcing of the
data to ensure the accuracy of the data origin. And the second
is in charge of storing and collecting the data provenance in
the blockchain. However, this framework does not provide
the history of data processing. In counterparts, a cloud-centric
secure provenance framework for IoT [25] is proposed to not
only identifies the origin of data but also generates a periodic
history of connected objects to overcome the limitations of
BlockPro.

One of the main disadvantages of the blockchain is the time
it takes for a transaction to actually take place. For example,
it can take up to several hours on the Bitcoin platform due
to the size of the Bitcoin network. Secondly, the consensus
algorithms used in the blockchain, especially the PoW (Proof
Of Work), are very greedy in terms of consumption. The
same goes for data redundancy and computational redundancy,
which are needed each time to decide whether or not a new
block can be added to the blockchain. Finally, blockchain
requires a complete model change, which means moving from
a centralized to a decentralized network. This can lead to
problems with the transition and integration of this technology
by customers into existing ecosystems.

IV. DISCUSSIONS

Traceability approaches are appropriate solutions to address
data sharing management. Ascending traceability provides the
ability to trace the provenance of different data, and therefore
allow users to reuse it with confidence in their own knowledge
systems. On the other hand, descending traceability allows
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entities to be informed where their data is distributed and
in which processes it is being involved in. In order to align
communication between involved IoT entities, it is necessary
to define a formal semantic description using ontological
modeling to describe the properties of the exchanged data in
order to apply expression rule language such as control usage
models, access control models, or Rule-Based Service Level
Agreement [26].

The incorporation of data provenance into IoT can be effec-
tive in helping to overcome security and trust issues. However,
little research has yet been carried out into that area and most
of the suggested schemes converge towards direct applications
of data provenance rather than the development of a general
data provenance management system that can be embedded
within various contexts for “data quality” assessment. Existing
systems continue to face the following limitations :

• Legal requirements for IoT security in Europe are rarely
considered through the building of IoT data management
systems. In 2018, according to the GDPR, users are to be
put at the core of the data prevention processing systems
and be sufficiently informed in order to make autonomous
choices, as well as to have the technical means to
impose their requirements on the data requirers. More
specifically, the right of informational self-determination
consists of granting users the control over the uses that
are made of their assets. Therefore, the goal is not only
the protection of users’s private data, but also to provide
them the necessary tools to make autonomous choices
and thus take decisions that they deem appropriate.

• Flexible data provenance management is expected if a
data requester within the system does not adhere to the
rules set by the data owner when using his assets. The
system must remain loose enough not to shut down all
access at once, which would lead to a disruption of the
entire ecosystem. In this context, we need to provide an
agile system that allows the user to be aware of whether
their requirements are being met, but also gives the data
requesters a chance to account if they violate the rules.

• In collaborative environments and multi-organizational
structures, companies agree on common long-term goals
such as customer satisfaction, economic growth and
reputation preservation. Nevertheless, their operational
objectives and strategic visions are different and vary
from one organization to another, leading to a potentially
biased quality of the produced data. In this context, the
policy management system must have the ability to take
into account the various sources of the collected data
as well as their different levels of granularity, therefore
providing a dynamic and adaptive security policy.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Provenance metadata can answer critical questions for
different use cases, especially challenges related to “Data
Quality” and Data Governance: determining the origin of a
data item allows us to ensure if it meets the technical and
legal requirements of a given activity and to assess its quality.

Our research is a work in progress, and we are currently
engaged with the technical foundation to conduct further eval-
uations to develop an ontology constructed based on existing
models that propose a standard vocabulary for smart cities,
and enrich it with our own specific requirements. Ontological
reasoning, which relies mainly on the accurate definition of
concepts and their relations, can take advantage of the general
reusability of ontologies and gain further knowledge by going
beyond a specified domain. A modeling formalization of the
control of use of data based on the uniformed representation
established before comes to build a sematic rule manager, that
will in its turn be incorporated in a Data Provenance system
in order to build a privacy mechanism.

This research work is in line with several large schemes
aimed to provide efficient management within the digital
world. From a quality management perspective, ensuring that
data is consistent, up to date and conforms ensures that it is
relevant to each entity’s individual goals and organizational
standards. From a legal point of view, a law-abiding IoT
environment is a new challenge that the legislative community
has to deal with. To comply with it, audit mechanism based on
policies must be enforced on how a data should be controlled
during its life cycle. On a parallel perspective, IoT main
goal is to provide trusted high-quality services and innovative
solutions to its users by transforming the captured data into
meaningful information. In this context, it is in the best
interest of the community to encourage entities within IoT
environment to share their data, and therefore help contribute
to overall public interest, generate technological progress, and
build the next generation of services for greater convenience
and value. The more data is made available, the more it
boosts IoT ecosystems. In order to achieve this, it is essential
to reassure all the agents implicated throughout the process
about the credibility of their own knowledge systems. Merging
data provenance mechanisms with a semantic model based on
rules is an appropriate solution to address the data sharing
management and build a civilized digital community in which
data is the centerpiece.

Data-driven models are growing rapidly and becoming
essential in all sectors. In this context, data governance has
evolved from a privacy matter to a multidimensional issue
with implications for various sectors including economics, law
enforcement, and even geopolitics. Poor protection of citizens’
data due to limited jurisdiction, lack of users’s trust, and
limited access to data are concerns that can be addressed by
establishing a firm data management solution.

This paper aims to introduce data provenance and model
based rule manager as a privacy preservation mechanism for
IoT applications in various domains. Our broad analysis of
existing research has allowed us to build a vision and identify
guidelines in order to infer privacy and security coverage in
IoT context. Our privacy ontology is being developed in an
ongoing smart agriculture research project, we intend to build
our inference system by proposing robust rules and integrate
the result into a data provenance mechanism to achieve a
privacy preserving system.
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