
sed and awk

CS 2204

*Notes adapted by Doug Bowman from notes by Mir Farooq Ali
and other members of the VT CS faculty

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 2

sed

 Stream editor
 Originally derived from ed line editor
 Used primarily for non interactive operations

 operates on data streams, hence its name

 Usage:
 sed options 'address action' file(s)

 Example: sed '1$s/^bold/BOLD/g' foo

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 3

sed: Line Addressing

 using line numbers (like 1,3p)
 sed '3,4p' foo.txt

 sed '4q' foo.txt

 sed –n '3,4p' foo.txt

print

quit

suppresses duplicate lines

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 4

sed: Line addressing (... continued)

 sed –n '$p' foo.txt

 Reversing line criteria (!)
 sed –n '3,$!p' foo.txt

last line

negation

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 5

sed: Context Addressing

 Use patterns/regular expressions rather than
explicitly specifying line numbers

 sed –n '/^From: /p' $HOME/mbox

 retrieve all the sender lines from the mailbox file

 ls –l | sed –n '/^.....w/p'

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 6

sed: Substitution

 Strongest feature of sed
 Syntax is
[address]s/pattern/replacement/flag

 sed 's/|/:/' data.txt
 substitute the character '|' with the character
':'

 sed 's/|/:/g' data.txt

global

substitute

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 7

sed: Using files

 Tedious to type in commands at the prompt,
especially if commands are repetitive

 Can put commands in a file and sed can use
them

 sed –f cmds.sed data.txt

file with cmds

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 8

sed example script

/^[A-Z]/i\
NEW SENTENCE
/[tT]rash/d
s/GWB/George W. Bush/

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 9

awk

 Powerful pattern scanning and processing
language

 Names after its creators Aho, Weinberger
and Kernighan

 Most commands operate on entire line
 awk operates on fields within each line
 Usage:

 awk options [scriptfile] file(s)

 Example: awk –f awk.script foo.txt

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 10

awk: Processing model

BEGIN {commands executed before any
input is read}

{

Main input loop for each line of
input

}

END {commands executed after all
input is read}

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 11

awk: First example

Begin Processing

BEGIN {print "Print Totals"}

Body Processing

{total = $1 + $2 + $3}

{print $1 " + " $2 " + " $3 " =
"total}

End Processing

END {print "End Totals"}

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 12

Input and output files

 Input
22 78 44

66 31 70

52 30 44

88 31 66

 Output
Print Totals

22 + 78 + 44 = 144

66 + 31 + 70 = 167

52 + 30 + 44 = 126

88 + 31 + 66 = 185

End Totals

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 13

awk: command line processing

 Input
1 clothing 3141

1 computers 9161

1 textbooks 21312

2 clothing 3252

2 computers 12321

2 supplies 2242

2 textbooks 15462

 Output
1 computers 9161

2 computers 12321

awk '$2 == "computers" {print}' sales.dat

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 14

awk: Other features

 Formatted printing using printf
 Conditional statements (if-else)
 Loops

 for
 while
 do-while

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 15

awk: Associative arrays

 Normal arrays use integers for their indices
 Associative arrays with strings as their indices
 Example: Age[“Robert”] = 56

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 16

awk: Example
salesDeptLoop.awk script
BEGIN {OFS = "\t"}
{deptSales [$2] += $3}
END {for (item in deptSales)
{
print item, ":", deptSales[item]
totalSales += deptSales[item]
} # for

print "Total Sales", ":", totalSales
} # END

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 17

Input and output

 Input
1 clothing 3141

1 computers 9161

1 textbooks 21312

2 clothing 3252

2 computers 12321

2 supplies 2242

2 textbooks 15462

 Output
computers : 21482

supplies : 2242

textbooks : 36774

clothing : 6393

Total Sales : 66891

(C) 2005 Doug Bowman, Virginia Tech CS Dept. 18

A final awk example

BEGIN {count=0; sum=0}
{if($1>=10 && $1 <= 100){
count++
sum+=$1
}

else{
print $1,"is not a double digit number"
}

}
END{print "There are",count,"double
digit numbers, which sum to",sum}

