
Supporting Cooperation in Project-EnterprisesG. Canals, C. Godart, M. Munier, S. TataUMR no7503 LORIA - Universit�e Henri Poincar�e - Universit�e Nancy 2Campus Scienti�que, BP 239,54506 Vand�uvre-l�es-Nancy Cedex - FRANCEE-mail: godart@loria.frAbstract| Due to the popularization of Internet,cooperative applications of project-enterprise type areexpected to become commonplace on the WEB. Byproject-enterprise, we understand short-lived enterpriseswhich are built by aggregating several partners arounda project and for the duration of this project. Theyrequire new technologies to organize their short dura-tion networks. For this purpose, this paper describes a
exible approach to build cooperation support softwareby assembling basic and generic cooperation patterns.Keywords|Cooperation patterns, cooperation modes,methodology, project-enterpriseI. IntroductionDue to the popularization of Internet, cooperativeapplications of project-enterprise type are expected tobecome commonplace on the WEB. The concept ofproject-enterprise depicts the idea that many applica-tions are the result of the cooperation between severalactors, playing di�erent roles, who build a temporaryrelational system which is structured by a common ob-jective project and for the duration of a project. Thiscorresponds also to the idea of temporarily virtual en-terprise [1]. Building trade is a good example of suchshort-lived enterprises: it implicates a lot of partners(architect, research consultant, control o�ce, build-ing �rm, electrician, carpenter, . . . ) which build anenterprise for the duration of the building work.We think that the number of project-enterprises isreally huge and that project-enterprises are an impor-tant market for the internet technology which allowsshort duration and low-cost connections between part-ners who had not invested into specialized communi-cation channels. However, cost consideration is notsu�cient: internet technologies must modify at thevery least the habits of partners and must compensatethis modi�cation with an increase of value. We thinkthat the development of 
exible cooperation models,which can apply to many di�erent situations and formany di�erent partners, acts in this direction. This isthe objective of the work described in this paper. Ourapproach is to de�ne generic cooperation patterns (orcooperation bricks), which can be combined to build

e�cient cooperation policies. As in addition project-enterprise partners have not necessary a large com-puter men sta�, this process must be easy to imple-ment. However, we do not cover all the aspects ofproject-enterprises. We are mainly interested in thedevelopment of new technologies and new services tosupport the concurrent engineering, and especially theco-design activities, inherent to project-enterprises.This paper describes the approach we develop toreach this objective with some intermediate results toprove its (partial) feasibility. Section II introduces theapproach. Section III describes a �rst taxonomy of co-operation modes on which we are currently reasoningand gives an example based on co-designing a building(III-C). Section IV explains why and how it can work(IV-A considers some formal aspects, IV-B quickly de-scribes an implementation strategy we are actually ex-perimenting). Finally, section V concludes.II. An approach to build cooperativeapplicationsOur approach to build cooperative applications isbased on a design methodology illustrated in �gure1. This methodology is based on the assumption thatany project-enterprise can be described as a networkof distributed activities. These activities are intercon-nected through some communication links that allowthe exchange and the sharing of various software arti-facts and documents.The methodology consists in two main steps: in a�rst step, designers build a cooperation table startingfrom their knowledge about the target application andfrom a taxonomy of cooperation modes. This cooper-ation table describes the di�erent kinds of interactionthat may occur between the di�erent activities in theproject. In a second step, developers implement thecooperative application based on the cooperation ta-ble resulting from the �rst step and on a library ofcooperation patterns. This is illustrated in �gure 1.Our goal is to provide tools to support this ap-proach. A �rst step toward this goal is the de�nitionof a set of cooperation modes to which designers can



target 
application
description

cooperation
 table

cooperation
modes

cooperation
patterns

cooperative
 applicationFig. 1. An Approach to Build Cooperative Applicationsrefer. We discuss a taxonomy of cooperation modes inthe next section. The result of the �srt step is a coop-eration table: we suppose that each row of this tableestablishes a relation between two activities, an ob-ject and a cooperation mode. Based on this table andon a set of cooperation patterns, developers must beable to build the cooperative application. A coopera-tion pattern is a programming view of a cooperationmode.III. A taxonomy of cooperation modesBefore to describe a �rst taxonomy of cooperationmodes on which we are currently reasoning, we intro-duce a general cooperation architecture on which ourcooperation modes are based. Especially, we focus oncooperation by object sharing.A. Cooperation by object sharingThis section quickly introduces our model of coop-eration based on object sharing. We consider that acooperative application is a network of connected andinteracting activities. Each activity has its proper sub-goal which contributes to the global goal of the globalapplication and stores objects it works with in its ownobject base (see �gure 2).Human agents work being connected to an activity.They modify objects with their usual tools by checkingthem out of the activity base and checking them inback to the base when the modi�cation is complete.Activity bases are multiversionned: every objectbelonging to an activity base is in fact stored as a ver-

Activity Three

LAN/WAN
Network

A A

A

Activity One Activity Two

Fig. 2. Object Sharingsion DAG. When a user wants to modify an object, hegenerally checks out from the activity base the latestversion of the object, modi�es it and checks in back tothe base, creating then a new version for this objects.This is illustrated in �gure 2 where a user connectedto activity three checks out object A, modi�es it andchecks in back to the base.In addition, each object may exist in di�erent ver-sions in di�erent activity bases at the same time. Infact, di�erent activities interact by transferring copiesof the objects from remote activity bases to theirproper base. This can be done just to simply read thevalue of the object, or to create a new dag of cooper-ative versions, as introduced in the following section.This is depicted in �gure 2: each activity (one, twoand three) owns its proper copy of object A : activ-ities one and two transferred the object A from thebase of the activity three. They both derived a newversion graph from the version they copied.In this context, transfers must respect some coop-eration policies or rather, based on this architecture,a cooperation policy is de�ned by a set of constraintson transfers between activity bases. Of course, orga-nization of workspaces and workspace transfers can belargely deepened, but we content us here with the prin-ciples requested to understand the cooperation modesintroduced below.B. Cooperation modesB.1 Taxonomy criteriaOur taxonomy of cooperation modes is based on thefollowing three main criteria.� read/write dependencies. The behavior of theinteractions between di�erent activities depends upon



the nature of operations these activities apply to ob-jects. As example, when two activities modify thesame object, some work risks to be lost. It is not thecase when the two activities simply read these objects.We say that, for a given object, it exists a read/readdependency between two activities if they read thesame object; it exists a write/read dependency if oneof them reads the object and the other modi�es it;it exists a write/write dependency if the two activi-ties modify it. Di�erent read/write dependencies canapply for the same couple of activities but for di�er-ent objects. Note that the write/read dependency isoriented; the others are not.� synchronous/asynchronous view. We say that,for a given object, two activities have a synchronousview of this object if they observe exactly the samesequence of states of the object. The modi�cations ofthe object that leads to a new state transition may beproduced by one or the other of the two activities, butalso.When two activities share an object and may observea di�erent state sequence for that object, they have anasynchronous view of this object. Two activities canhave a synchronous view of an object and an asyn-chronous view of another.� �nal state dependency. For a given object, twoactivities are �nal state dependent if they must sharethe same value of the object at the time they terminatetheir execution. The two activities are not required tosimultaneously terminate : one can terminate produc-ing a �nal value of the object while the other continueits execution using this value, but without modifyingit.It is easy to understand that, for a lot of activities ina lot of applications, its is necessary to synchronizetheir view of shared objects before to terminate. Thisapplies especially for activities which have an asyn-chronous view of some object(s) shared with other ac-tivity(ies).B.2 Cooperation modesCombining these three criteria, we can distinguishbetween twelve modes of interaction (see �gure 3) be-tween two activities and for a given object. In addi-tion, we have introduce the concurrent and the com-petitive behavior to characterize two activities whichdo not cooperate but must be synchronized.1. concurrent. Two activities are concurrent if theyaccess the same object but each one ignores (and mustignore) the existence of the other. It is the generalparadigm largely implemented in traditional databasemanagement systems.

Read/Write Asyn./Syn. Final St.

Dependencies
Cooperation Mode

Read-Read

Write-Write

Write-Read

A

A

A

NFS

NFS

NFS

neighbouring

developer-inspector

alternatives

Read-Read

Write-Write

Write-Read

S

S

S

NFS

NFS

NFS

mirror read

sync. developer-inspector

groupware editor

Read-Read

Write-Write

Write-Read

A

A

A

FS

FS

FS

co-inspectors

client-server

cooperative write

Read-Read

Write-Write

Write-Read

S

S

S

FS

FS

FS

sync. co-inspectors

sync. client-server

sync. cooperative write

concurrent

competitiveFig. 3. Cooperation Modes2. competitive. Two activities are competitive ifthey must execute in isolation with respect to the ap-plication process.3. neighbouring. Two activities are neighbours ifthey have transferred a version of the same object intheir proper workspace to read it. Probably that theshared object is not critical for the application (it canbe as example a user's manual of a programming lan-guage).4. developer/inspector. Two activities follows adeveloper/inspector scheme if one (the developer)modi�es an object and the second (the inspector)reads one or several successive cooperative version pro-duced by the other. As example, a user has the respon-sibility to edit a part of a document; the other inspectat a given time the part assigned to the �rst.5. alternative. Two activities are alternative if,starting from the same original object, they developtwo alternative versions of the same object withoutinterfering. Each alternative version can lead to a dagof cooperative versions. There is no transfer betweentheir workspaces. May be that the di�erent versionswill have to be merged and this might not be an easytask, but this is not the role of the two alternatives.



6. mirror read. Two activities read the same ver-sion of an object. This can be for security purpose orbecause of the sharing of a common awareness source.7. synchronous developer/inspector. The samebehavior than developer/inspector, but in addition,the inspector see each last cooperative version pro-duced by the developer as soon as possible.8. co-editor. Two activities are co-editor if theymodify simultaneously the same object. Each new co-operative version produced by an activity is seen assoon as possible by the other.9. co-inspector. Two users are co-inspector if theyread, possibly di�erent cooperative versions, of thesame object, but they must agree on the last valuethey have read before to terminate their execution.10. client-server. Two activities follow a client-server scheme if one has the responsibility to modifyan object and the other reads this object to integrateit in its proper work. Client and server can momen-tarily see di�erent versions of the object, but theymust agree on the value of the shared object beforethe server stabilizes it.11. cooperative write. Two activities develop twoalternative versions of the same object and must mergetheir modi�cations before to conclude.12. synchronous co-inspector. Two activities readthe same version of an object and must agree on thelast version they read before to conclude simultane-ously.13. synchronous client-server. A client-server, butin addition, the client must read each new cooperativeversion produced by the server as soon as possible.14. synchronous cooperative write. A coopera-tive write, but in addition, both activities see alwaysthe same version of the object. In other terms, eachnew cooperative version produced by an activity isseen as soon as possible by the other.To conclude this section, we want to underline thatthis taxonomy consider only unidirectional coopera-tion modes. However, more complex modes can bebuilt from these basic one. As example, we callwriter/reviewer the combination of two symetricalclient-server modes in which one object transferredin one direction is the review of the other transferredin the other direction.C. An Example CaseTo illustrate the approach introduced above, we ap-ply it now to a simple project-enterprise in which four

partners (an architect, a structural engineer, a HVACengineer and a town planer, see �gure 4) contribute tothe development of a common concept, the plan of abuilding [2].
Town

Planner

Structural
Engineer

HVAC
Engineer

Architect

plan

review

plan planFig. 4. A Project-EnterpriseThe organization of work and especially the coop-eration model is de�ned in the cooperation tables1 il-lustrated in �gure 5. The goal of the architect is toproduce the plan of the building. It works under thecontrol of the town planer which veri�es that the ex-ternal appearance of the building respects the rulesde�ned for the town. They share two objects : theplan and the plan-review. The architect creates a�rst version of the plan and sends it to the town plan-ner. The town planner veri�es if the plan respectsthe district rules and returns a plan-review. Then,the architect and the town planner exchange asyn-chronously several versions of the plan and the corre-sponding plan-review. Finally, they must agree on acommon value of the plan.With this view of things, a client-server mode is welladapted to organize their interactions concerning theplan. To ensure that every review will be used by thearchitect, a synchronous client-server mode is betteradapted for plan-reviews. As de�ned in section III-B.2, this means that the architect will have to takeinto account all successive versions of the review.The architect and the structural engineer have cho-sen to interact very closely; they work on the plan atthe same time, in a cooperative write mode. The onlyconstraint is that they have to merge their modi�ca-tions before to conclude.An agreement between the architect and the HVACengineer is that the architect provides the HVAC engi-neer with some preliminary versions of the plan. Theobjective is to allow him to organize his work in ad-vance. However, the architect wants the HVAC engi-1For some cooperation modes, the two activities do not ful-�ll the same role. For instance, when we use the client/servermode, one activity is the server while the other is the client. Weunderlined the role ful�lled by the activity.



neer to see the �nal version of the building plan: theywork following a client-server mode.activity remote activity object cooperation modearchitect struct. eng. plan cooperative writearchitect HVAC eng. plan client/serverarchitect town planner plan client/serverarchitect town planner review sync. client/serveractivity remote activity object cooperation modetown planner architect plan client/servertown planner architect review sync. client/serveractivity remote activity object cooperation modestruct. eng. architect plan cooperative writeactivity remote activity object cooperation modeHVAC eng. architect plan client/serverFig. 5. Cooperation Tables for the ExampleIV. How and why can it work ?This section gives some hints about how to put theapproach into practice from the point of view of cor-rectness of execution and from the point of view ofsystem implementation.A. Correctness criteria to integrate cooperation modesSynchronizing interactions as introduced above isnot a simple job. Our way to do it is to implement eachcooperation mode as a generic cooperation (software)pattern and to develop a glue to assemble patterns.Currently, we have yet experimented the approachwith a subset of cooperation modes, including these in-troduced in the above example. Each generic patternis de�ned as a set of rules which constrains the trans-fers between workspaces. These patterns are dynam-ically glued thanks to a protocol which implementsa correctness criterion, the COO-serializability [3],[4]. This criterion characterizes the execution of pro-cesses which interact in client-server and/or coopera-tive write cooperation modes. In addition, the pro-tocol can restrict the set of executions accepted bythe criterion to manage synchronous client-server andsynchronous cooperative write modes.B. Distributed control for cooperative activitiesMost distributed systems are based on a client/serverarchitecture in which, though single activities may ex-ecute at geographically distributed nodes, the knowl-edge about the processes which execute is kept in acentralized database at the server level. This cen-tralization makes it easier to synchronize and monitorthe overall execution as all decisions are taken on thisserver which has a global view of the whole system.

However, this means that activities have to be con-nected to this server continuously (�gure 6-a). Thisdoes not correspond to the nature of the applicationsthat we consider in which:� Each actor already has his own environment anddoesn't want to change his habits. Moreover, he hasto be free to work as he wants in his environment.� Due to the expensiveness of network connections,actors are generally disconnected when they work, butthis sould not prevent them to work.� In large projects, nobody possesses the entire knowl-edge of the system. Therefore, it is extremely di�cultand often impossible to determine, in a centralizedway, all the possible impacts of a given change.
b1 b2

b4b3

A1

A3

A4

A2

A3

A1

b1

b3

A4

b4

b2

A2

(a) (b)

Ax bxActivity Local database
for the activity

Interaction
controlFig. 6. Centralized Control vs Distributed ControlTo support these requirements, our approach isbased on a peer-to-peer architecture (�gure 6-b). Thatis, an activity is viewed as a self contained componentthat cooperates with other components by exchang-ing, during its execution, some (possibly preliminary)results. By self contained we mean that an activityshould manage itself its own data, both for data stor-age and interaction control. Doing this, each activityis responsible for its data exchanges with others ac-tivities. So, unlike con�guration management tools ortransactional systems, we avoid activity denpendencytowards any kind of server, neither for data access norfor interaction control.The main idea is that when an activity want to com-municate with another one, these activities begin bynegotiating a cooperation protocol (i.e. a cooperationmode). This negotiation will ensure, at least, thatthe protocol one activity wants to use is known by theother. Thus each activity will have a cooperation table



which purpose will be to show which protocol to useto control the exchanges of a given data with a givenactivity. Figure 5 shows cooperations tables built foreach activity of the example depicted �gure 4.Then, the system will ensure that all exchanges be-tween these two activities will respect the negotiatedprotocol, while keeping them independent of one an-other: in case of protocol violation, only the faultyexchange is refused. From the user point of view, themain advantage of our approach is that we de�ne co-operation protocols to coordinate data exchanges be-tween activities and not to control the activities them-selves. Therefore, an activity is largely independent ofother activities for the task it performs. This meansthat each actor of the system is free to work like hewants, as long as his data exchanges with other actorsare correct.We go in further details with this architecture andits implementation as CORBA services in [5].V. ConclusionThe above sections illustrate the fact that the ap-proach is feasible from both a theoretical point of viewand from an implementation point of view. From atheoretical point of view, our approach comes from aprevious experience in the area of software develop-ment environments and was implemented in the COOsystem [6]. It works because we are able to refer for allconsidered cooperation modes to a common correct-ness criterion that acts as an integration mechanism.In addition, the current protocol is generic and appli-cation independent: this is a guarantee that it can beused by organizations with a small computer sciencesexpertise. All that is implemented in the COO sys-tem [6]. Our objective is to continue in this way butfor a larger and better representative set of cooper-ation mode. The goal is to develop a framework forspecifying and building distriubted cooperative appli-cations with a predictable behavior.References[1] M. Hardwick and R. Bolton, \The industrial Virtual Enter-prise," Communications of the ACM, vol. 40, no. 9, Septem-ber 1997.[2] K. Benali, M. Munier, and C. Godart, \Cooperativemodelsin co-design," in International Conference on Agile Manu-facturing (ICAM'98), Minneapolis, USA, June 1998.[3] G. Canals, P. Molli, and C. Godart, \Concurrency con-trol for cooperating software processes," in Proceedings ofthe 1996 Workshop on Advanced Transaction Models andArchitecture (ATMA'96), Goa, India, 1996.[4] G. Canals, P. Molli, M. Munier, and C. Godart, \A Cri-terion to Enforce Correctness of Cooperative Executions,"Information Sciences, Elsevier Sciences Inc., vol. 110, Oc-tober 1998.[5] M. Munier and C. Godart, \Cooperation services for widelydistributed applications," in Tenth International Confer-

ence on Software Engineering and Knowledge Engineering,1998.[6] C. Godart, G. Canals, F. Charoy, P. Molli, and H. Skaf,\Designing and ImplementingCOO: Design Process, Archi-tectural Style, Lessons Learned," in International Confer-ence on Software Engineering (ICSE18), 1996, IEEE Press.About the AuthorsG�erôme Canals is an associate professor in theComputer Science Department, University of Nancy 2Technology Institute, Nancy, and a member of theECOO team at LORIA. He received a Ph.D. in Com-puter Science from the University of Nancy I in 1992.His research interests include distributed persistentworkspaces, advanced transaction models, distributedshared memories and group communication protocols.Claude Godart is presently a full professor at theUniversity Henri Poincare, Nancy, France and leaderof the ECOO research team at the Laboratoty of Re-search in Computer Sciences and its Applications (LO-RIA), a joint venture between INRIA, CNRS and theuniversities of Nancy, He received a Ph.D in ComputerSciences from University of Nancy I in 1981.His research interests include software tools forcooperative applications and software processes, ad-vanced transaction models and distributed persistentworkspaces.Manuel Munier is a Ph.D. candidate at the Uni-versity of Nancy I and member of the ECOO team atLORIA.His research interests include distributed coopera-tive applications, advanced transaction models anddistributed concurrency control schemes.Samir Tata is a Ph.D. candidate at the Univer-sity of Nancy I and a member of the ECOO team atLORIA. He holds an engineering degree from the uni-versity of Tunis.His research interests include formal tools for inter-action speci�cation in distributed cooperative applica-tions, advanced transaction models and non-standardconcurrency control schemes.


