Supporting Cooperation in Project-Enterprises

G. Canals, C. Godart, M. Munier, S. Tata
UMR n°7503 LORIA - Université Henri Poincaré - Université Nancy 2
Campus Scientifique, BP 239,
54506 Vandeceuvre-les-Nancy Cedex - FRANCE
E-mail: godart@loria.fr

Abstract— Due to the popularization of Internet,
cooperative applications of project-enterprise type are
expected to become commonplace on the WEB. By
project-enterprise, we understand short-lived enterprises
which are built by aggregating several partners around
a project and for the duration of this project. They
require new technologies to organize their short dura-
tion networks. For this purpose, this paper describes a
flexible approach to build cooperation support software
by assembling basic and generic cooperation patterns.

Keywords— Cooperation patterns, cooperation modes,
methodology, project-enterprise

I. INTRODUCTION

Due to the popularization of Internet, cooperative
applications of project-enterprise type are expected to
become commonplace on the WEB. The concept of
project-enterprise depicts the idea that many applica-
tions are the result of the cooperation between several
actors, playing different roles, who build a temporary
relational system which is structured by a common ob-
jective project and for the duration of a project. This
corresponds also to the i1dea of temporarily virtual en-
terprise [1]. Building trade is a good example of such
short-lived enterprises: it implicates a lot of partners
(architect, research consultant, control office, build-
ing firm, electrician, carpenter, ...) which build an
enterprise for the duration of the building work.

We think that the number of project-enterprises is
really huge and that project-enterprises are an impor-
tant market for the internet technology which allows
short duration and low-cost connections between part-
ners who had not invested into specialized communi-
cation channels. However, cost consideration is not
sufficient: internet technologies must modify at the
very least the habits of partners and must compensate
this modification with an increase of value. We think
that the development of flexible cooperation models,
which can apply to many different situations and for
many different partners, acts in this direction. This is
the objective of the work described in this paper. Our
approach is to define generic cooperation patterns (or
cooperation bricks), which can be combined to build

efficient cooperation policies. As in addition project-
enterprise partners have not necessary a large com-
puter men staff, this process must be easy to imple-
ment. However, we do not cover all the aspects of
project-enterprises. We are mainly interested in the
development of new technologies and new services to
support the concurrent engineering, and especially the
co-design activities, inherent to project-enterprises.
This paper describes the approach we develop to
reach this objective with some intermediate results to
prove its (partial) feasibility. Section IT introduces the
approach. Section ITI describes a first taxonomy of co-
operation modes on which we are currently reasoning
and gives an example based on co-designing a building
(ITI-C). Section IV explains why and how it can work
(TV-A considers some formal aspects, IV-B quickly de-
scribes an implementation strategy we are actually ex-
perimenting). Finally, section V concludes.

II. AN APPROACH TO BUILD COOPERATIVE
APPLICATIONS

Our approach to build cooperative applications is
based on a design methodology illustrated in figure
1. This methodology is based on the assumption that
any project-enterprise can be described as a network
of distributed activities. These activities are intercon-
nected through some communication links that allow
the exchange and the sharing of various software arti-
facts and documents.

The methodology consists in two main steps: in a
first step, designers build a cooperation table starting
from their knowledge about the target application and
from a taxonomy of cooperation modes. This cooper-
ation table describes the different kinds of interaction
that may occur between the different activities in the
project. In a second step, developers implement the
cooperative application based on the cooperation ta-
ble resulting from the first step and on a library of
cooperation patterns. This 1s illustrated in figure 1.

Our goal is to provide tools to support this ap-
proach. A first step toward this goal is the definition
of a set of cooperation modes to which designers can

target
application
descriptio

—
nodes

cooperation
tabl e

V
o

cooperative
application

cooperation [——
patterns

Fig. 1. An Approach to Build Cooperative Applications

refer. We discuss a taxonomy of cooperation modes in
the next section. The result of the fisrt step is a coop-
eration table: we suppose that each row of this table
establishes a relation between two activities, an ob-
ject and a cooperation mode. Based on this table and
on a set of cooperation patterns, developers must be
able to build the cooperative application. A coopera-
tion pattern is a programming view of a cooperation
mode.

III. A TAXONOMY OF COOPERATION MODES

Before to describe a first taxonomy of cooperation
modes on which we are currently reasoning, we intro-
duce a general cooperation architecture on which our
cooperation modes are based. Especially, we focus on
cooperation by object sharing.

A. Cooperation by object sharing

This section quickly introduces our model of coop-
eration based on object sharing. We consider that a
cooperative application is a network of connected and
interacting activities. Each activity has its proper sub-
goal which contributes to the global goal of the global
application and stores objects 1t works with in its own
object base (see figure 2).

Human agents work being connected to an activity.
They modify objects with their usual tools by checking
them out of the activity base and checking them in
back to the base when the modification is complete.

Activity bases are multiversionned: every object
belonging to an activity base is in fact stored as a ver-

Activity One

Activity Two

Act\vity Thtee

T

Fig. 2. Object Sharing

sion DAG. When a user wants to modify an object, he
generally checks out from the activity base the latest
version of the object, modifies it and checks in back to
the base, creating then a new version for this objects.
This is illustrated in figure 2 where a user connected
to activity three checks out object A, modifies it and
checks in back to the base.

In addition, each object may exist in different ver-
sions in different activity bases at the same time. In
fact, different activities interact by transferring copies
of the objects from remote activity bases to their
proper base. This can be done just to simply read the
value of the object, or to create a new dag of cooper-
ative versions, as introduced in the following section.
This is depicted in figure 2: each activity (one, two
and three) owns its proper copy of object A: activ-
ities one and two transferred the object & from the
base of the activity three. They both derived a new
version graph from the version they copied.

In this context, transfers must respect some coop-
eration policies or rather, based on this architecture,
a cooperation policy is defined by a set of constraints
on transfers between activity bases. Of course, orga-
nization of workspaces and workspace transfers can be
largely deepened, but we content us here with the prin-
ciples requested to understand the cooperation modes
introduced below.

B. Cooperation modes

B.1 Taxonomy criteria

Our taxonomy of cooperation modes is based on the
following three main criteria.
» read/write dependencies. The behavior of the
interactions between different activities depends upon

the nature of operations these activities apply to ob-
jects. As example, when two activities modify the
same object, some work risks to be lost. It is not the
case when the two activities simply read these objects.
We say that, for a given object, it exists a read/read
dependency between two activities if they read the
same object; it exists a write/read dependency if one
of them reads the object and the other modifies it;
it exists a write/write dependency if the two activi-
ties modify it. Different read/write dependencies can
apply for the same couple of activities but for differ-
ent objects. Note that the write/read dependency is
oriented; the others are not.

+ synchronous/asynchronous view. We say that,
for a given object, two activities have a synchronous
view of this object if they observe exactly the same
sequence of states of the object. The modifications of
the object that leads to a new state transition may be
produced by one or the other of the two activities, but
also.

When two activities share an object and may observe
a different state sequence for that object, they have an
asynchronous view of this object. Two activities can
have a synchronous view of an object and an asyn-
chronous view of another.

¢+ final state dependency. For a given object, two
activities are final state dependent if they must share
the same value of the object at the time they terminate
their execution. The two activities are not required to
simultaneously terminate : one can terminate produc-
ing a final value of the object while the other continue
its execution using this value, but without modifying
it.

It is easy to understand that, for a lot of activities in
a lot of applications, its is necessary to synchronize
their view of shared objects before to terminate. This
applies especially for activities which have an asyn-
chronous view of some object(s) shared with other ac-
tivity(ies).

B.2 Cooperation modes

Combining these three criteria, we can distinguish
between twelve modes of interaction (see figure 3) be-
tween two activities and for a given object. In addi-
tion, we have introduce the concurrent and the com-
petitive behavior to characterize two activities which
do not cooperate but must be synchronized.

1. concurrent. Two activities are concurrent if they
access the same object but each one ignores (and must
ignore) the existence of the other. It is the general
paradigm largely implemented in traditional database
management systems.

Dependencies)
Read/Write | Asyn./Syn. | Final St. Cooperation Mode
Read-Read A NFS neighbouring
Write-Read A NFS developer-inspector
Write-Write A NFS alternatives
Read-Read S NFS mirror read
Write-Read S NFS sync. developer-inspector
Write-Write S NFS groupware editor
Read-Read A FS co-inspectors
Write-Read A FS client-server
Write-Write A FS cooperative write
Read-Read S FS sync. co-inspectors
Write-Read S FS sync. client-server
Write-Write S FS sync. cooperative write

concurrent
competitive

Fig. 3. Cooperation Modes

2. competitive. Two activities are competitive if
they must execute in isolation with respect to the ap-
plication process.

3. neighbouring. Two activities are neighbours if
they have transferred a version of the same object in
their proper workspace to read it. Probably that the
shared object is not critical for the application (it can
be as example a user’s manual of a programming lan-

guage).

4. developer/inspector. Two activities follows a
developer/inspector scheme if one (the developer)
modifies an object and the second (the inspector)
reads one or several successive cooperative version pro-
duced by the other. Asexample, a user has the respon-
sibility to edit a part of a document; the other inspect
at a given time the part assigned to the first.

5. alternative. Two activities are alternative if,
starting from the same original object, they develop
two alternative versions of the same object without
interfering. Each alternative version can lead to a dag
of cooperative versions. There is no transfer between
their workspaces. May be that the different versions
will have to be merged and this might not be an easy
task, but this 1s not the role of the two alternatives.

6. mirror read. Two activities read the same ver-
sion of an object. This can be for security purpose or
because of the sharing of a common awareness source.

7. synchronous developer/inspector. The same
behavior than developer/inspector, but in addition,
the inspector see each last cooperative version pro-
duced by the developer as soon as possible.

8. co-editor. Two activities are co-editor if they
modify simultaneously the same object. Each new co-
operative version produced by an activity is seen as
soon as possible by the other.

9. co-inspector. Two users are co-inspector if they
read, possibly different cooperative versions, of the
same object, but they must agree on the last value
they have read before to terminate their execution.

10. client-server. Two activities follow a client-
server scheme if one has the responsibility to modify
an object and the other reads this object to integrate
it in its proper work. Client and server can momen-
tarily see different versions of the object, but they
must agree on the value of the shared object before

the server stabilizes it.

11. cooperative write. Two activities develop two
alternative versions of the same object and must merge
their modifications before to conclude.

12. synchronous co-inspector. Two activities read
the same version of an object and must agree on the
last version they read before to conclude simultane-
ously.

13. synchronous client-server. A client-server, but
in addition, the client must read each new cooperative
version produced by the server as soon as possible.

14. synchronous cooperative write. A coopera-
tive write, but in addition, both activities see always
the same version of the object. In other terms, each
new cooperative version produced by an activity is
seen as soon as possible by the other.

To conclude this section, we want to underline that
this taxonomy consider only unidirectional coopera-
tion modes. However, more complex modes can be
built from these basic one. As example, we call
writer/reviewer the combination of two symetrical
client-server modes in which one object transferred
in one direction is the review of the other transferred
in the other direction.

C. An Ezample Case

To illustrate the approach introduced above, we ap-
ply it now to a simple project-enterprise in which four

partners (an architect, a structural engineer, a HVAC
engineer and a town planer, see figure 4) contribute to
the development of a common concept, the plan of a

building [2].
Town ;

pl an

revi ew

pl an

Structural
Engi neer

Fig. 4. A Project-Enterprise

pl an
HVAC
Engi neer

The organization of work and especially the coop-
eration model is defined in the cooperation tables' il-
lustrated in figure 5. The goal of the architect is to
produce the plan of the building. It works under the
control of the town planer which verifies that the ex-
ternal appearance of the building respects the rules
defined for the town. They share two objects : the
plan and the plan-review. The architect creates a
first version of the plan and sends it to the town plan-
ner. The town planner verifies if the plan respects
the district rules and returns a plan-review. Then,
the architect and the town planner exchange asyn-
chronously several versions of the plan and the corre-
sponding plan-review. Finally, they must agree on a
common value of the plan.

With this view of things, a client-server mode is well
adapted to organize their interactions concerning the
plan. To ensure that every review will be used by the
architect, a synchronous client-server mode is better
adapted for plan-reviews. As defined in section III-
B.2, this means that the architect will have to take
into account all successive versions of the review.

The architect and the structural engineer have cho-
sen to interact very closely; they work on the plan at
the same time, in a cooperative write mode. The only
constraint is that they have to merge their modifica-
tions before to conclude.

An agreement between the architect and the HVAC
engineer is that the architect provides the HVAC engi-
neer with some preliminary versions of the plan. The
objective 1s to allow him to organize his work in ad-
vance. However, the architect wants the HVAC engi-

LFor some cooperation modes, the two activities do not ful-
fill the same role. For instance, when we use the client/server
mode, one activity is the server while the other is the client. We
underlined the role fulfilled by the activity.

neer to see the final version of the building plan: they

work following a client-server mode.

activity remote activity object cooperation mode
architect struct. eng. plan cooperative write
architect HVAC eng. plan client/server
architect town planner plan client/server
architect town planner review | sync. client/server
activity remote activity object cooperation mode
town planner architect plan client/server
town planner architect review | sync. client/server
activity remote activity object cooperation mode
struct. eng. architect plan cooperative write
activity remote activity object cooperation mode
HVAC eng. architect plan client/server

Fig. 5. Cooperation Tables for the Example

IV. How AND WHY CAN IT WORK 7

This section gives some hints about how to put the
approach into practice from the point of view of cor-
rectness of execution and from the point of view of
system implementation.

A. Correctness criteria to integrate cooperation modes

Synchronizing interactions as introduced above is
not a simple job. Our way to do it is to implement each
cooperation mode as a generic cooperation (software)
pattern and to develop a glue to assemble patterns.

Currently, we have yet experimented the approach
with a subset of cooperation modes, including these in-
troduced in the above example. Each generic pattern
is defined as a set of rules which constrains the trans-
fers between workspaces. These patterns are dynam-
ically glued thanks to a protocol which implements
a correctness criterion, the COO-serializability [3],
[4]. This criterion characterizes the execution of pro-
cesses which interact in client-server and/or coopera-
tive write cooperation modes. In addition, the pro-
tocol can restrict the set of executions accepted by
the criterion to manage synchronous client-server and
synchronous cooperative write modes.

B. Dustributed control for cooperative activities

Most distributed systems are based on a client/server
architecture in which, though single activities may ex-
ecute at geographically distributed nodes, the knowl-
edge about the processes which execute is kept in a
centralized database at the server level. This cen-
tralization makes it easier to synchronize and monitor
the overall execution as all decisions are taken on this
server which has a global view of the whole system.

However, this means that activities have to be con-
nected to this server continuously (figure 6-a). This
does not correspond to the nature of the applications
that we consider in which:

o Each actor already has his own environment and
doesn’t want to change his habits. Moreover, he has
to be free to work as he wants in his environment.

o Due to the expensiveness of network connections,
actors are generally disconnected when they work, but
this sould not prevent them to work.

¢ In large projects, nobody possesses the entire knowl-
edge of the system. Therefore, it is extremely difficult
and often impossible to determine, in a centralized
way, all the possible impacts of a given change.

(a) (b)

C —Local database Interaction
ACt'V'ty for the activity control

Fig. 6. Centralized Control vs Distributed Control

To support these requirements, our approach is
based on a peer-to-peer architecture (figure 6-b). That
18, an activity 1s viewed as a self contained component
that cooperates with other components by exchang-
ing, during its execution, some (possibly preliminary)
results. By self contained we mean that an activity
should manage itself its own data, both for data stor-
age and interaction control. Doing this, each activity
is responsible for its data exchanges with others ac-
tivities. So, unlike configuration management tools or
transactional systems, we avoid activity denpendency
towards any kind of server, neither for data access nor
for interaction control.

The main idea is that when an activity want to com-
municate with another one, these activities begin by
negotiating a cooperation protocol (i.e. a cooperation
mode). This negotiation will ensure, at least, that
the protocol one activity wants to use is known by the
other. Thus each activity will have a cooperation table

which purpose will be to show which protocol to use
to control the exchanges of a given data with a given
activity. Figure 5 shows cooperations tables built for
each activity of the example depicted figure 4.

Then, the system will ensure that all exchanges be-
tween these two activities will respect the negotiated
protocol, while keeping them independent of one an-
other: in case of protocol violation, only the faulty
exchange is refused. From the user point of view, the
main advantage of our approach is that we define co-
operation protocols to coordinate data exchanges be-
tween activities and not to control the activities them-
selves. Therefore, an activity is largely independent of
other activities for the task it performs. This means
that each actor of the system is free to work like he
wants, as long as his data exchanges with other actors
are correct.

We go in further details with this architecture and
its implementation as CORBA services in [5].

V. CONCLUSION

The above sections illustrate the fact that the ap-
proach is feasible from both a theoretical point of view
and from an implementation point of view. From a
theoretical point of view, our approach comes from a
previous experience in the area of software develop-
ment environments and was implemented in the COO
system [6]. Tt works because we are able to refer for all
considered cooperation modes to a common correct-
ness criterion that acts as an integration mechanism.
In addition, the current protocol is generic and appli-
cation independent: this is a guarantee that it can be
used by organizations with a small computer sciences
expertise. All that is implemented in the COO sys-
tem [6]. Our objective is to continue in this way but
for a larger and better representative set of cooper-
ation mode. The goal 1s to develop a framework for
specifying and building distriubted cooperative appli-
cations with a predictable behavior.

REFERENCES

[1] M. Hardwick and R. Bolton, “The industrial Virtual Enter-
prise,” Communications of the ACM, vol. 40, no. 9, Septem-
ber 1997.

[2] K. Benali, M. Munier, and C. Godart, “Cooperative models
in co-design,” in International Conference on Agile Manu-
facturing (ICAM’98), Minneapolis, USA, June 1998.

[3] G. Canals, P. Molli, and C. Godart, “Concurrency con-
trol for cooperating software processes,” in Proceedings of
the 1996 Workshop on Advanced Transaction Models and
Architecture (ATMA’96), Goa, India, 1996.

[4] G. Canals, P. Molli, M. Munier, and C. Godart, “A Cri-
terion to Enforce Correctness of Cooperative Executions,”
Information Sciences, Elsevier Sciences Inc., vol. 110, Oc-
tober 1998.

[6] M. Munier and C. Godart, “Cooperation services for widely
distributed applications,” in Tenth International Confer-

ence on Software Engineering and Knowledge Engineering,
1998.

[6] C. Godart, G. Canals, F. Charoy, P. Molli, and H. Skaf,
“Designing and Implementing COO: Design Process, Archi-
tectural Style, Lessons Learned,” in International Confer-
ence on Software Engineering (ICSE18), 1996, IEEE Press.

ABOUT THE AUTHORS

Gérome Canals is an associate professor in the
Computer Science Department, University of Nancy 2
Technology Institute, Nancy, and a member of the
ECOOQO team at LORIA. He received a Ph.D. in Com-
puter Science from the University of Nancy I in 1992.

His research interests include distributed persistent
workspaces, advanced transaction models, distributed
shared memories and group communication protocols.

Claude Godart is presently a full professor at the
University Henri Poincare, Nancy, France and leader
of the ECOO research team at the Laboratoty of Re-
search in Computer Sciences and its Applications (LO-
RIA), a joint venture between INRIA, CNRS and the
universities of Nancy, He received a Ph.D in Computer
Sciences from University of Nancy I in 1981.

His research interests include software tools for
cooperative applications and software processes, ad-
vanced transaction models and distributed persistent
workspaces.

Manuel Munier is a Ph.D. candidate at the Uni-
versity of Nancy I and member of the ECOO team at
LORIA.

His research interests include distributed coopera-
tive applications, advanced transaction models and
distributed concurrency control schemes.

Samir Tata is a Ph.D. candidate at the Univer-
sity of Nancy I and a member of the ECOO team at
LORIA. He holds an engineering degree from the uni-
versity of Tunis.

His research interests include formal tools for inter-
action specification in distributed cooperative applica-
tions, advanced transaction models and non-standard
concurrency control schemes.

