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Abstract

Metadata play a critical role in structuring and contextualizing data,
particularly in security systems where provenance, quality, and
traceability directly influence the reliability and accountability of
downstream models. However, definitions and practices around
metadata remain fragmented across domains, limiting their reuse
and interoperability. This paper presents a lightweight, extensible
ontology for metadata, based on Semantic Web standards, meta-
data are designed to support secure data exchange, enhance trust
through semantic transparency, and enable robust provenance
tracking across complex information systems. Covering key meta-
data dimensions, descriptive, structural, administrative, and tem-
poral, the ontology also incorporates provenance and dynamic
metadata, enabling auditable data flows and consistent handling
to strengthen data integrity, traceability, and security in critical
systems.
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1 Introduction

Data-driven applications increasingly depend on the collaboration
of multiple stakeholders to achieve their objectives efficiently and
reliably. These applications typically involve the integration of het-
erogeneous information systems that must interoperate seamlessly
and share data across organizational or technical boundaries. For
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instance, in the energy domain, various entities such as smart build-
ings, industrial facilities, and energy providers exchange consump-
tion data in order to optimize resource allocation, reduce waste,
and promote the integration of renewable energy sources. In such
distributed environments, the reliability and trustworthiness of
shared data become a critical concern, particularly for applications
in regulated or security-sensitive sectors [1, 21]. Traditional met-
rics used to evaluate data quality, namely confidentiality, integrity,
availability, and traceability, are necessary but insufficient [14].
These properties do not fully capture the semantic, contextual, or
operational characteristics of data that influence its reliability in
practice.

To address these limitations, recent research emphasizes the role
of metadata for security as a first-class component in assessing data
quality [6]. According to the National Information Standards Orga-
nization (NISO), metadata are defined as "structured information
that describes, explains, locates, or otherwise represents something
else" [22]. This definition emphasizes the diverse roles metadata
can play, ranging from descriptive and explanatory to locational
and representative functions. Crucially, metadata are not static an-
notations: they are inherently contextual and dynamic, shaped by
the nature of the data they describe and the environment in which
they are used. For instance, it can be used to enhance decision
making [8], the transparency of open data [23], or the basement of
machine-learning security algorithms [11].

Metadata do more than only describing data, it enables easier
data discovery, and can help increase understanding of a given
information. For example, in a smart city, air quality data collected
by sensors is accompanied by metadata such as location, timestamp,
and sensor status. Additionally, metadata can offer contextual clues
that help users better grasp the content and relevance of the data
they are examining, ensuring accurate interpretation across infor-
mation systems [17]. We advocate that detailed, semantically rich
metadata can be considerered as security and trust metrics. Beyond
describing content or format, metadata must capture operational
and contextual information such as provenance, access control,
usage constraints, and applied transformations. For instance, being
able to trace the lineage of data from raw system logs to processed
indicators is critical for validating incident reports, conducting
forensic analysis, or ensuring compliance with security policies.
Metadata can also support early detection of anomalies, inconsisten-
cies, or policy violations, before they propagate through systems [9].
Although the importance of metadata quality has gained increas-
ing attention in recent years, there is still no universally accepted
formalism. Definitions of metadata quality are often highly domain-
specific and tend to vary significantly across different domains.
Moreover, this lack of standardization challenge interoperability
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and makes it difficult to assess or compare metadata quality across
heterogeneous and distributed systems.

The establishment of a formal knowledge representation of meta-
data can play a critical role in addressing this challenge by enabling
context-aware evaluation of data and ensure semantic interoperabil-
ity [29]. Through appropriate metadata descriptions, decision mak-
ers can better judge whether the data at hand are "fit for purpose”
in the specific context of their task. Situating data quality within a
semantically enriched and formally defined metadata framework
can enable organizations to enhance trust, interoperability, and
security across complex and dynamic data ecosystems. To this end,
we rely on standard ontology model to establish a shared security
vocabulary, complemented by description logic-based reasoning
technologies to address data governance needs. We propose a light-
weight and extensible metadata ontology called Metadata Manage-
ment Ontology (MMO). Our approach seeks to balance conceptual
definitions with practical applicability, enabling semantic reasoning,
traceability, and cross-system governance. While domain-agnostic
in structure, the ontology has been designed with a particular fo-
cus on security-sensitive contexts, such as incident investigation,
compliance monitoring, and trusted data sharing.

The paper is structured as follows: Section 2 reviews related
metadata frameworks and security ontologies. Section 3 introduces
the Metadata Management Ontology (MMO), describing its design
principles and implementation in Protégé. Section 4 presents the
ontology evaluation, including structural metrics and a reasoning
scenario involving its integration within an IoT context using SSN
ontology. Finally, Section 5 concludes the paper and outlines future
research directions.

2 Related Work

Various researchers have explored how to assess the quality of
metadata records through multiple dimensions such as accuracy,
provenance, consistency, logical coherence, timeliness, accessibility,
specificity of subject descriptors, and comprehensiveness [12]. De-
spite these efforts, the community has yet to agree on a universal
framework for defining and measuring these quality aspects. This
lack of consensus is largely due to domain-specific requirements
and context-driven variations, which necessitate tailored quality
criteria depending on the use case [3].

Metadata quality evaluation frameworks have been developed
in several works [4]. Nevertheless, these approaches often remain
either too domain-specific or too rigid for integration with hetero-
geneous, dynamic systems. They tend to lack support for meta-
data that evolve over time or metadata that exist at multiple ab-
straction levels (e.g., at the level of a data point, a processing step,
or a workflow). To tackle this, ontologies, which are sets of con-
cepts used to describe relationships between entities in a machine-
understandable format known as RDF, have been developed to
enrich metadata expressiveness and enable reasoning over security-
relevant properties. For instance, the Unified Cybersecurity Ontol-
ogy (UCO) [27] aims to unify multiple cybersecurity standards and
vocabularies into a coherent OWL-based framework.
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Several ontologies tried to capture the essence of data quality but
in a superficial light way. For instance, PROV-O [25] provides a stan-
dardized vocabulary for modeling and exchanging provenance infor-
mation across systems. The specification of this ontology serves as
the ground work for the implementation of provenance applications
across diverse domains. While provenance is a critical dimension of
metadata quality, PROV-O does not address other relevant metrics.
On the other hand, LIoPY [18] is a legal-compliant ontology that
preserves privacy constraints in IoT environments, demonstrat-
ing how privacy and legal requirements can be enforced through
reasoning mechanisms. Similarly, IdSM-O [13] is an ontology for
data sharing management within IoT that aims to preserve secu-
rity throught the allignent of three existing ontologies: SSN [20],
PROV-O, and access control OrBAC ontology. Both papers attempt
to infer data quality in the context of data sharing within Internet
of Things environments, however they limit their scope to common
criteria such as accuracy, frequency, and precision. While the use
of metadata as a security and trustworthiness metric is gaining
traction, existing approaches often fall short of capturing the full
spectrum of quality dimensions. Current models typically rely on
domain-specific assumptions and introduce inconsistent evaluation
criteria, with limited engagement in comprehensive cross-domain
analysis. To the best of our knowledge, there is no widely adopted,
domain-agnostic standard for the structured description and as-
sessment of metadata quality. Moreover, although each of these
ontologies addresses one or more aspects of metadata, for example,
PROV-O focuses on provenance, there is still no unified formal
knowledge representation that integrates all of these aspects. Ad-
dressing this gap is essential for building interoperable systems
where metadata can be reliably used to support security and trust
across diverse application contexts.

3 The Metadata Management Ontology (MMO)

Developing an ontology that supports metadata-driven trust, in-
teroperability, and contextual understanding requires a systematic
design methodology. Several approaches exist to guide ontology en-
gineering, from manual, process-oriented methods such as TOVE,
Ontology Development 101, and the Unified Methodology [26], to
more recent semi-automatic approaches using text mining and nat-
ural language processing, such as OntoLearn Text-To-Onto [19]. For
the Metadata Management Ontology (MMO), we followed MethOn-
tology [7], a well-established, iterative framework that couples
rigorous engineering steps with systematic knowledge acquisition.
MethOntology organizes development into a structured lifecycle,
namely: specification, knowledge acquisition, conceptualisation,
formalisation, integration, implementation, and finally evaluation
and documentation.

The next subsections first present the conceptual design of the
MMO ontology, including class hierarchies, metadata categories,
and alignment with existing standards. We then describe its im-
plementation using the Protégé environment, covering editing,
validation, and reasoning.

3.1 Ontology design

Specification and knowledge acquisition: The first step in the
ontology design was to define the scope and focus. We adopted an



MMO: A Lightweight Semantic and Trust Model for Metadata

ontological modeling approach to formally structure key concepts
and their relationships. In designing the ontology, we considered
various metadata types, descriptive, structural, administrative, as
well as the tension between static and dynamic metadata. Given
the diversity of use cases, we chose to prioritize a descriptive and
structural orientation, focusing on the semantics of data objects and
their context rather than runtime behavior. Rather than encoding
the full complexity of ISO-defined data quality dimensions [10], we
leave this aspect to domain-specific extensions. This decision sup-
ports interoperability while allowing flexibility for domain-specific
extensions.

To better understand the domain, we reviewed metadata-related
documentation and standards. The ontology is built around the
Metadata class, which provides information about the more general
Data class. The Data class is used to represent any information ob-
ject, such as credentials, attestations, policies, or log events, within
security or trust management systems. For example, a field such
as Title inherits from Descriptive, which itself extends the base
Metadata class, allowing for semantic precision while maintaining
generalizability.

Conceptualisation: During this phase, we elicited and organized
the domain’s key concepts, relations, and constraints. To ensure
conceptual coherence and maximize interoperability, the ontology
draws inspiration from several established metadata standards,
notably Dublin Core (DC) [24] and DCAT [5]. These models provide
foundational descriptors for datasets and digital resources, such as
title, creator, format, and license, which we have selectively adapted
to our use case.

Rather than replicating these standards in their entirety, we
opted for a simplified and unified schema that maintains semantic
compatibility while reducing complexity. For example, the class
Descriptive in our ontology encapsulates elements like Title and
Description, echoing the core properties from Dublin Core, but
without the full breadth of optional refinements or domain/range

constraints. Similarly, Adninistrative aspects such as AccessRights

or Provenance are inspired by DCAT and PROV-O, but represented
in a lighter, more modular way that fits dynamic and heterogeneous
security scenarios. This alignment strategy allows for semantic map-
ping and potential future integration with external vocabularies,
while ensuring that the ontology remains compact, operational,
and easy to extend across domains with minimal overhead.
Initially, we aimed to model data quality directly within the on-
tology. However, due to the complexity and domain-specific nature
of data quality dimensions, we opted to leave quality assessment to
the discretion of the ontology’s consumers. The model allows for
such extensions but does not impose predefined criteria, leaving
room for contextual prioritization (e.g., completeness, accuracy,
provenance). Rather than modeling metadata as isolated descrip-
tors, we constructed a structured hierarchy based on inheritance.
The Metadata class is specialized into thematic subclasses, such as
Descriptive, Structural, and Administrative, inspired by tax-
onomies commonly found in metadata literature. These categories
can be further refined into more specific concepts, such as Title
as a subclass of Descriptive.
Formalisation: We translated the conceptual model into formal
OWL representations. In addition to object properties used to define
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semantic relationships between individuals (e.g., linking a meta-
data instance to a log entry or a trust artifact), the ontology also
incorporates two key data properties essential for associating literal
values, such as strings, numbers, or dates, with metadata elements,
enabling more expressive and operational descriptions. Specifically,
the ontology defines the following data properties: label, a generic
textual descriptor attached to any instance of Metadata. Through
inheritance, this property is applicable to all subclasses and pro-
vides a human-readable name or identifier; and 1value, used to
associate literal values of any datatype, such as strings, numbers,
or dates, with a metadata instance.

These data properties enhance the ontology’s expressiveness and
usability. They enable fine-grained value assignment and support a
range of reasoning and validation tasks, for instance, querying all
metadata elements with a numeric threshold, or filtering based on
textual labels. By centralizing these properties at the Metadata level,
and reusing them across subclasses, the model ensures consistency
and reduces redundancy in implementation. Each class and property
is formally defined to support automated reasoning and rule-based
enrichment. The resulting hierarchical organization provides a
modular and flexible foundation, well-suited for application across
various domains, particularly in systems concerned with digital
trust, identity, access control, and policy traceability.

Integration: To avoid duplication and promote interoperability,
the ontology reuses and aligns with external standards and vocabu-
laries such as Dublin Core, DCAT and PROV-O, while simplifying
and adapting these resources to fit the specific needs of trust man-
agement and secure data exchange. The ontology is designed to be
extensible: users can introduce new classes, object properties, or
data properties tailored to their specific contexts, without disrupt-
ing the core structure. This modularity supports domain-specific
adaptations while preserving semantic coherence and compatibility
with external vocabularies. Moreover, the ontology is designed for
seamless integration into existing ontological systems. Any preex-
isting class from another ontology can support metadata simply
by declaring it as a subclass of Data. Since Metadata is associated
with instances of Data, this inheritance mechanism enables easy
and consistent metadata annotation for external concepts without
requiring structural refactoring.

3.2 Ontology Implementation in Protégé

The ontology was developed using the Protégé editor, which fa-
cilitated class hierarchy design, property definition, and rule inte-
gration in a user-friendly and standards-compliant environment.
Figure 1 illustrates the ontology structure within the Protégé inter-
face, showing the inheritance hierarchy among Metadata classes
(Descriptive, Structural, Administrative,...) and one of their
respective subclasses such as Title, Format, or AccessRights.

The ontology was implemented in RDF/XML format, which pro-
vides a flexible, graph-based representation for data and metadata.
RDF enables linking concepts through triples, making it suitable
for integration across distributed and heterogeneous systems [2].
For more expressive semantics, the ontology leverages OWL (Web
Ontology Language), which supports class axioms, subclassing,
cardinality constraints, and typed data properties, essential for con-
sistent reasoning and interoperability.
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To associate literal values with metadata elements, two primary
data properties were defined: 1abel and value. The value range
was intentionally left untyped (i.e., without a fixed rdfs: range) to
maximize flexibility. However, in cases where type enforcement is
necessary (e.g., ensuring a value is an integer or a date), Protégé
allows the manual specification of datatype restrictions using OWL
constructs such as xsd: integer, xsd:string, or xsd:date. These
constraints can be applied via class-level axioms or property range
restrictions, depending on the precision required for a specific use
case. The full ontology is available as open-source and maintained
in a public GitLab repository’.

= Metadata —> Descriptive ‘— = . DescriptiveMD 1

Figure 1: Descriptive Metadata classes in Protégé

4 Ontology Evaluation

Ontology evaluation aims to compare an ontology against specifi-
cation requirements, such as competency questions that are meant
to be solvable by the developed ontology. We evaluate three main
aspects: the correctness of the infered results, the integration of
MMO with existing ontologies, and the scalability performance of
the model.

4.1 Correctness Validation

According to [28], there are various criteria for ontology evalua-
tion: accuracy, which ensures alignment between axioms and expert
knowledge; adaptability, reflecting the ontology’s extensibility and
ability to support diverse domain tasks; completeness, which as-
sesses how well the ontology captures the full scope and nuances of
the domain; computational efficiency, referring to the performance
of reasoning and querying operations; and conciseness, which em-
phasizes the exclusion of redundant or unnecessary concepts to
maintain a streamlined and non-redundant structure. Direct mea-
surement of the mentioned criteria is difficult. Therefore, we would
be looking for metrics to express those requirements and assess
both the ontology correctness and ontology quality. In this context,
we create a matrix between the previously mentioned criteria and
OntoMetrics proposed in [15].

We will evaluate MMO based on four major metrics: schema,
knowledge base, class, and graph. Respectively, those metrics aim
to address the design and richness of an ontology, instances distri-
bution within it, examine the classes and relations, and finally mea-
sures to calculate the structure of the ontology. Firstly, we evaluate
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the ontology’s correctness, which includes accuracy, completeness,
and conciseness. Secondly, we assess the ontology’s quality, which
encompasses computational efficiency and adaptability.

Table 1 shows the evaluation document that details MMO cal-
culated quality metrics for ontology validation. A positive correla-
tion is between the OntoMetrics criteria and Vrande¢i¢ ontology
evaluation metrics. The evaluation metrics confirm that MMO is
structurally sound and ready for deployment. Attribute richness
(0.34) balances semantic expressiveness with simplicity, while in-
heritance richness (1.08) and relationship richness (0.44) indicate a
well-distributed hierarchy and meaningful connectivity. Complete-
ness is supported by an axiom/class ratio of 7.45, and conciseness
is shown through a class children count of 4 and inheritance depth
of 5. Efficiency metrics, angledness of 0.6, 32 paths and a maximum
depth of 74, demonstrate scalability without heavy reasoning costs.
With an average population of 0.3 and class richness of 0.25, the
ontology remains lightweight. Finally, adaptability is validated by
a sibling cardinality of 20 and 16 leaf nodes, confirming MMO’s
ability to incorporate new concepts without disrupting its structure.

4.2 Case Study: Internet of Things (IoT)

We illustrated our ideas in the Internet of Things (IoT) context, but
our ontology is agnostic and can be applied in other domains. Thus,
we describe the following simple scenario. In a smart city context,
sensors distributed across various neighborhoods collect environ-
mental data such as CO2 concentration, with each ssn: Observation
enriched using the MMO ontology to enhance semantic context.
Metadata annotations include mmo: Frequency, indicating how of-
ten the observation is updated.

To enable semantic classification based on update frequency, we
define a SWRL rule that infers properties of the stimulus detected
by the sensor. The rule identifies an instance of ssn:0bservation
linked to a metadata element of type mmo: Frequency and checks
whether the associated mmo:value exceeds a threshold of 0.7.
When this condition is satisfied, the rule traces the observation
back to the sensor that generated it (ssn:madeBySensor), and fur-
ther to the stimulus that the sensor detects (ssn:detects). Finally,
it infers that the stimulus is a proxy for a high-frequency property
using the SSN relation ssn:isProxyFor.

The rule is expressed as follows:

ssn:0Observation(?obs) A mmo:hasMetadata(?obs,

meta) N mmo: Frequency (?meta) A
mmo:value(?meta, ?v) A swrlb:greaterThan(?v,
0.7) A ssn:madeBySensor(?obs, ?sensor) A

ssn:detects(?sensor, ?stimulus)
— ssn:isProxyFor(?stimulus, :HighFregProperty)

To validate the semantic interoperability between the SSN and
MMO ontologies, we used the Protégé editor with the Pellet rea-
soner. After importing both ontologies, we instantiated a sample
observation and annotated it with relevant metadata. The individ-
ual :C02_obs was declared as an instance of ssn:Observation,
and linked to a metadata instance :C02_meta_frequency of type
mmo : Frequency with a numerical value of 0. 9 (typed as xsd: float).
This setup was encoded as follows:
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Ontology Correctness

Ontology Quality

Accuracy ‘ Completeness ‘ Conciseness

Computational Efficiency ‘ Adaptability

Schema metrics

Attribute richness 0.34 - - - -
Inheritance richness 1.08 - - - -
Relationship richness 0.44 - - - -
Axiom/class ratio - 7.45 - - -

Graph metrics

Absolute sibling cardinality - -

- - 20

Absolute depth - - - 74 -
Total number of paths - - - 32 -
Class metrics
Class inheritance richness 5 - - - -
Class children count - - 4 - -
Knowledgebase metrics
Average population - - - 0.3 -
Class richness 0.25 - - - -

Table 1: MMO evaluation document

:C02_obs rdf:type ssn:Observation .
:C02_meta_frequency rdf:type mmo:Frequency ;
mmo:value "0.9" xsd:float .

:C02_obs mmo:hasMetadata :C02_meta_frequency .
:C02_obs ssn:madeBySensor :C02_sensor .
:C02_sensor ssn:detects :C02_stimulus .

A SWRL rule was defined to classify observations by update
frequency and infer system-level effects. The reasoning engine
checks if an ssn:0Observation is linked to a mmo: Frequency with
mmo: value above @.7. Since :C02_obs has a frequency value of
0.9, and its sensor CO2_sensor detects CO2_stimulus, the rea-
soner infers that C02_stimulus is serving as a proxy for

:HighFregProperty. Upon reasoning, the engine correctly clas-
sified : CO2_stimulus under this rule and inferred the right output,
confirming the rule’s validity and successful cross-ontology reason-
ing.

]

Observation * @ Cco2_meta_freque

ncy

[ # coz ot

*® sensor 4 CO2_sensor

o

*® stimulus J 4 CO2_stimulus

* @ HighFreqPropert ‘
y

Figure 2: Result after launching the inference engine

Althought not complex, this use case allows us to successfully
validate the reasoning process in order to check logical consistency
and perform inference, confirming that our ontology is both se-
mantically well-formed and logically coherent. This process also
demonstrates the correct integration of our model with the SSN

ontology. Thanks to its lightweight, extensible, and interoperable
design, MMO can be easily incorporated into intelligent systems or
other OWL ontologies. By simply subclassing Data, any external
class can inherit the metadata properties defined in our ontology,
enabling efficient semantic enrichment in complex, heterogeneous
environments without introducing heavy dependencies or domain-
specific constraints. In addition, MMO can be used in more security-
sensitive contexts, such as regulatory compliance, where metadata
traceability ensures accountability, or incident response, and where
fine-grained provenance analysis facilitates root-cause investiga-
tion.

4.3 Scalability

We conduct some experiment explore the behaviour of MMO in
large-scale settings with a higher number of observations and meta-
data instances. To do so we use OWLAPI and Java to measure and
compare the performance response using SWRL API To this end,
we evaluate whether the computational time of the reasoning is
acceptable by performing several tests on the same rule mentioned
before, while increasing the number of observations from 1000 to
120000. Each observation have three types of metadata: description,
frequency, and modification date. Thus, we perform an experiment
to measure the time needed to check and select all the stimulus
who are proxy for a high frequency property. Fifty per cent of each
number of observation returns false, while the other half returns
true to the query.

Figure 3 depicts the performance response while increasing ob-
serations number from 1000 to 120000. The processing time varies
from 0.6 to 11 seconds. The quasi linearity property behind these
results means that a better computer system setting would obtain a
lower processing time.

5 Conclusion and Future Work

Recognizing the importance of capturing data features and manip-
ulation descriptions in distributed environments, in this paper we
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Response time vs Number of observations
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Figure 3: Response time vs number of observations

advocate for the role of metadata towards this goal. We introduced a
lightweight ontology designed to unify the representation of meta-
data across heterogeneous systems. We validated the ontology’s
semantic coherence and logical consistency through structural met-
rics and rule-based reasoning. Its successful integration into estab-
lished frameworks, such as the W3C SSN ontology, demonstrates
its practical interoperability.

As future work, a key use case of our approach is Al, where
assessing dataset quality is critical to ensuring the reliability of
model outputs. Additionally, metadata could play an essential role
in Al explainability by documenting how data is processed prior
to model training, thereby ensuring trust in the resulting models.
Authors in [16] has explored this vision, focusing solely on data
provenance as a metadata feature. In contrast, our approach hope
to broadens this perspective by encompassing a wider range of
metadata types, using a formal standard. In future work, we plan
to extend the ontology with explicit support for distinguishing
between static and dynamic metadata. This will allow for better
modeling of evolving contexts, particularly in time-sensitive or
real-time environments such as cybersecurity systems. We also
intend to reinforce the integration of provenance and trust mecha-
nisms with PROV-O to ensure traceability, source accountability,
and policy enforcement. In security-critical domains, our ontol-
ogy provides a foundational layer for trust-aware metadata that
supports transparency, governance, and resilience.
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