R5D8 – Cybersécurité

Manuel Munier

UPPA STEE - IUT des Pays de l'Adour - Département RT - LIUPPA manuel.munier@univ-pau.fr https://munier.perso.univ-pau.fr/teaching/butinfo-r5d8/

BUT3 Info - Anglet 2025-2026

Préambule

- Il faut améliorer la qualité des systèmes informatiques
 - les pannes informatiques paraissent insupportables
 - → les utilisateurs se sont habitués à une "informatique invisible" permanente
 - → les experts parlent d'un monde technologique que l'on ne peut plus débrancher. . .
- Importance économique du logiciel
 - importance croissante de l'informatique dans l'économie
 - coût du logiciel supérieur à celui du matériel
 - coût de la maintenance supérieur à celui de la conception

Préambule

- Problèmes
 - Démarche ingénierie encore mal intégrée
 - ⇒ la non qualité des systèmes informatiques a des conséquences qui peuvent être très graves en cas de dysfonctionnements
 - L'informatique n'est pas prise au sérieux
 - quasiment tout le monde a un ordinateur, une tablette, un smartphone à la maison
 - ⇒ "je sais l'utiliser", voire "je sais tout" ou "j'ai un cousin qui..."
 - ⇒ pas de distinction entre usage professionnel et usage privé
 - Les utilisateurs ne réalisent pas...
 - la dépendance de leur métier à l'outil informatique
 - la valeur des informations qu'ils manipulent

BUT3 Info - Anglet - 2025

"Qualité" des logiciels

- Les erreurs involontaires de conception et de codage représentent un tiers du coût des sinistres informatiques!
 - ⇒ Génie Logiciel
- Les défaillances/malveillances quant à elles causent 60% de ce coût...
 - ⇒ Sécurité des Systèmes d'Information (SSI) (aka sécurité informatique)
 - + cybersécurité

Farcus

by David Waisglass Gordon Coulthart

Yaahooo !!! J'ai réussi à faire planter le système de la tour de contrôle !!!

Sécurité informatique?

- Différentes facettes de la sécurité informatique
- Différentes compétences

 - sécurité système / sécurité réseau / sécurité du matériel
 - sécurité logicielle \iff droits SQL, permissions Java, indicateurs de confiance, etc.
 - **gestion des risques** → politique de sécurité, audits, etc.
 - droit & numérique

Plan du cours

- 1 Introduction à la Sécurité Informatique
- Sécurité Bases de Données
- Gestion des Risques
- 4 Droit & Numérique
- Conclusion

Plan du cours

- 1 Introduction à la Sécurité Informatique
 - Présentation
 - Critères d'évaluation
 - Modèles de sécurité
 - Implémentation
- Sécurité Bases de Données
- Gestion des Risques
- 4 Droit & Numérique

La sécurité en informatique

- Intuitivement : permettre uniquement les actions légitimes, c'est-à-dire empêcher qu'un utilisateur puisse exécuter des opérations qui ne devraient pas lui être permises
- ⇒ Pour définir quelles sont les opérations autorisées et celles qui sont interdites, il faut établir une politique de sécurité
- Les ITSEC¹ (standard européen) définissent une politique de sécurité comme étant

"l'ensemble des lois, règles et pratiques qui régissent la facon dont l'information sensible et les autres ressources sont gérées, protégées et distribuées à l'intérieur d'un système spécifique"

1. Information Technology Security Evaluation Criteria

La sécurité en informatique

- Pour construire une politique de sécurité il faut :
 - d'une part, définir un ensemble de propriétés de sécurité qui doivent être satisfaites par le système
 - → ex : "une information classifiée ne doit pas être transmise à un utilisateur non habilité à la connaître"
 - d'autre part, établir un schéma d'autorisation, qui présente les règles permettant de modifier l'état de protection du système
 - → ex : "le propriétaire d'une information peut accorder un droit d'accès pour cette information à n'importe quel utilisateur"

Propriétés de sécurité

- Si la politique d'autorisation est cohérente, alors il ne doit pas être possible, partant d'un état initial sûr (c'est-à-dire satisfaisant les propriétés de sécurité), d'atteindre un état d'insécurité (c'est-à-dire un état où les propriétés de sécurité ne sont pas satisfaites) en appliquant le schéma d'autorisation
- Les ITSEC définissent 3 propriétés de sécurité :
 - la confidentialité → prévention de la divulgation non autorisée de l'information
 - l'intégrité → prévention de la modification non autorisée de l'information
 - la disponibilité → prévention d'un refus d'accès à une ressource ou à une information normalement autorisée (déni de service)

Politique de sécurité → 3 directions

- physique ⇒ ensemble de procédures et de moyens
 - protection des locaux et des biens contre des risques majeurs • incendie, inondation,...
 - contrôle des accès physiques aux matériels (info. & comm.)
 → gardiens, codes, badges,...
- ② administrative ⇒ ensemble de procédures et moyens relatifs à la sécurité d'un point de vue organisationnel
 - structure de l'organigramme & répartition des tâches
 séparation des environnements de développement, d'industrialisation et de production des applicatifs
 - propriétés de sécurité
 - → limiter les cumuls ou les délégations abusives de pouvoir
 - → garantir une séparation des pouvoirs

Politique de sécurité → 3 directions

- Solution de logique ⇒ gestion du contrôle d'accès logique ⇒ repose sur un triple service d'identification, d'authentification et d'autorisation
 - elle spécifie qui a le droit d'accéder à quoi, et dans quelles circonstances
 - ⇒ avant de se servir du système, tout utilisateur devra décliner son identité (identification) et prouver qu'il est bien la personne qu'il prétend être (authentification)
 - une fois la relation établie, les actions légitimes que peut faire cet utilisateur sont déterminées par la politique d'autorisation

Autorisation

- ⇒ Gérer et vérifier les droits d'accès aux ressources en fonction des règles spécifiées dans la politique de sécurité
 - un sujet (entité qui demande l'accès → entité active) possède un droit d'accès sur un objet (entité à laquelle le sujet souhaite accéder → entité passive) si et seulement s'il est autorisé à effectuer la fonction d'accès (action) correspondante sur cet objet
 - Exemple de mise en œuvre ²
 - les droits d'accès peuvent être symboliquement représentés dans une matrice de droits d'accès dont les lignes représentent les sujets et les colonnes représentent les objets
 - une cellule de la matrice contient donc les droits d'accès d'un sujet sur un objet
 - la matrice est gérée conformément aux règles définies dans la politique de sécurité

Règlement de sécurité

- Les définitions précédentes supposent que ce qui est permis est connu
 - le règlement de sécurité définit ce qui est autorisé et ce qui ne l'est pas (les règles de la politique de sécurité)
 - un règlement de sécurité est généralement un ensemble de :
 - → permissions
 - les enfants ont la permission de minuit
 - tout médecin a le droit d'accéder aux dossiers médicaux de ses patients
 - → interdictions
 - les enfants ont la permission de minuit, sauf la petite sœur
 - les médecins n'ont pas le droit d'effacer des diagnostics déjà établis
 - → obligations
 - les médecins sont obligés de conserver les dossiers médicaux pendant la durée fixée par la loi

BUT3 Info - Anglet - 2025

Plan du cours

- 1 Introduction à la Sécurité Informatique
 - Présentation
 - Critères d'évaluation
 - Modèles de sécurité
 - Modèles de contrôle d'accès discrétionnaires
 - Modèles de contrôle d'accès obligatoires
 - Modèles de contrôle d'usage
 - Implémentation
 - Oracle
 - Exemples

Critères d'évaluation

- Un système est sûr si et seulement si le règlement de sécurité ne peut pas être violé
- Les 1ers critères d'évaluation de la sécurité ont été définis aux États-Unis dans ce qui est couramment appelé le Livre Orange ou TCSEC³
 - → fondés à la fois sur des listes de fonctions de sécurité à remplir et sur les techniques employées pour la vérification, ces critères conduisent à classer les systèmes en sept catégories ou niveaux (D, C1, C2, B1, B2, B3, A1)

TCSEC

- Pour chaque niveau, quatre familles de critères sont définies :
 - la politique d'autorisation stipule une politique précise à suivre en fonction des différents niveaux de certifications visés
 - les critères d'audit précisent les fonctions requises en matière d'identification, d'authentification et d'audit des actions
 - les critères d'assurance fixent des recommandations concernant des méthodes de conception et de vérification utilisées afin d'augmenter la confiance de l'évaluateur
 - → il s'agit de garantir que le système implémente bien la fonctionnalité qu'il prétend avoir
 - les critères de documentation spécifient les documents qui doivent être fournis avec le produit lors de l'évaluation

TCSEC

- Caractéristiques principales des niveaux définis par les TCSEC :
 - → un système classé au niveau D est un système qui n'a pas été évalué
 - → jusqu'aux niveaux C1 et C2, le système peut utiliser une politique discrétionnaire (cf. suite du cours)
 - → pour les niveaux B1, B2, et B3 le système utilise une politique obligatoire (cf. suite du cours)
 - → un système classé A1 est fonctionnellement équivalant à un système classé B3, sauf qu'il est caractérisé par l'utilisation de méthodes formelles de vérification pour prouver que les contrôles utilisés permettent bien d'assurer la protection des informations sensibles

TCSEC

- Les TCSEC visaient d'abord à satisfaire les besoins du DoD (*Department of Defense*) des États-Unis, privilégiant ainsi la confidentialité des données militaires
- Le manque de souplesse et la difficulté de leur mise en œuvre, ont conduit d'autres pays à élaborer et adopter leurs propres critères d'évaluation
 - ex-Communauté Européenne → ITSEC (1991)
 - Canada → CTCPEC (1993)
 - Japon → JCSEC (1992)

ITSEC

- Les ITSEC ⁴ sont le résultat d'harmonisation de travaux réalisés au sein de quatre pays européens : l'Allemagne, la France, les Pays-Bas et le Royaume-Uni
- Les ITSEC introduisent en plus la notion de cible d'évaluation (ou TOE⁵)
 - une politique de sécurité
 - une spécification des fonctions requises dédiées à la sécurité
 - une définition des mécanismes de sécurité (optionnelle)
 - la cotation annoncée de la résistance minimum des mécanismes
 - le niveau d'évaluation visé

5. Target Of Evaluation

^{4.} Information Technology Security Evaluation Criteria

Critères Communs

- Harmonisation des critères canadiens (CTCPEC), européens (ITSEC) et américains (TCSEC)
 - ⇒ critères communs (en anglais Common Criteria for Information Security Evaluation)
 - ⇒ devenus maintenant une norme internationale (ISO 15408)
- Ces critères contiennent deux parties bien distinctes comme dans les ITSEC : fonctionnalité et assurance
- Les critères communs définissent également une cible d'évaluation (TOE) ainsi que les profils de protection
 - NB : déjà existants dans les critères fédéraux américains (Federal Criteria, 1992)

Plan du cours

- 1 Introduction à la Sécurité Informatique
 - Présentation
 - Critères d'évaluation
 - Modèles de sécurité
 - Modèles de contrôle d'accès discrétionnaires
 - Modèles de contrôle d'accès obligatoires
 - Modèles de contrôle d'usage
 - Implémentation
 - Oracle
 - Exemples

- Pour sécuriser un système informatique il est donc important de définir un modèle de sécurité
- Un tel modèle de sécurité exprime les besoins de sécurité du système d'information;
 il inclut :
 - un règlement de sécurité
 - un modèle d'administration spécifiant qui a le droit de mettre à jour le règlement de sécurité
- Il existe différents modèles de sécurité
 - les modèles discrétionnaires
 - les modèles obligatoires (ou de contrôle de flux)
 - les modèles de contrôle d'usage

- Les modèles de contrôle d'accès discrétionnaires (ou DAC ⁶) sont les plus répandus et implémentés mais sont vulnérables aux attaques par cheval de Troie
- Les modèles de contrôle d'accès obligatoires (ou MAC⁷) imposent des règles incontournables destinées à forcer le respect des exigences de sécurité
 - ils sont très formels, permettent d'atteindre un très haut niveau de sécurité (théoriquement) mais sont difficiles à implémenter
 - en général ils proposent des règlements qui visent à renforcer la propriété de confidentialité

^{6.} Discretionary Access Control

^{7.} Mandatory Access Control

- MAC ⇒ contrôle de flux : ces modèles proposent des solutions pour l'identification et l'élimination des canaux cachés
 - → "un canal caché est un chemin de communication pouvant être exploité par un processus de transfert d'information de telle sorte qu'il contourne les mécanismes de contrôle d'accès, et qu'ainsi il viole la politique de sécurité"
- Les modèles de contrôle d'usage sont plus récents et ont été proposés afin de prendre en compte les nouveaux besoins de sécurité présents dans certaines applications telles que la gestion des droits numériques (ou DRM⁸)
 - → les DRM multimédia ont été très controversés
 - → mais les DRM peuvent répondre à de nouveaux besoins en entreprise (E-DRM 9)
- 8. Digital Rights Management
- 9. Enterprise-DRM

Plan du cours

- Introduction à la Sécurité Informatique
 - Présentation
 - Critères d'évaluation
 - Modèles de sécurité
 - Modèles de contrôle d'accès discrétionnaires.
 - Modèles de contrôle d'accès obligatoires
 - Modèles de contrôle d'usage
 - Implémentation
 - Oracle
 - Exemples

BUT3 Info - Anglet - 2025

- Existent depuis les années 70; ont subi de nombreuses évolutions
 - un des premiers modèles proposés est celui de B. Lampson (structure de machine à états)
 - "Protection", 5th Princeton Symposium on Information Sciences and Systems, 1971
 - progressivement amélioré → modèle HRU (M.A. Harrison, W.L. Ruzzo et J.D. Ullman)
 "Protection in Operating Systems". Communication of the ACM, 19(8), pp. 461-471, 1976
 - un des modèles les plus récents : OrBAC (Organization Based Access Control, 2003)
 "Organization Based Access Control", IEEE 4th International Workshop on Policies for Distributed Systems and Networks
 (Policy 2003), Lake Come, Italy, June 4-6, 2003

Modèles de contrôle d'accès discrétionnaires

• Quelques autres modèles de contrôle d'accès :

```
RBAC Role Based Access Control
TBAC Task Based Access Control
VBAC View Based Access Control
TMAC TeaM based Access Control
```

- Le modèle HRU aurait pu s'appeler IBAC (Identity Based Access Control) car il repose sur l'identité des entités actives du système d'information
- Il introduit les concepts de sujet, action et objet
 - sujet c'est l'entité active ; il désigne un utilisateur, le système lui même, un processus s'exécutant pour le compte d'un utilisateur ou un processus système
 - objet c'est l'entité passive; il désigne une information ou une ressource à laquelle un sujet peut accéder pour réaliser une action
- action désigne l'effet recherché lorsqu'un sujet accède à un objet (ex : lire, écrire)

- L'objectif du modèle HRU est de contrôler tout accès direct des sujets aux objets via l'utilisation des actions
- Le règlement (politique d'autorisations) correspond à un ensemble d'autorisations positives (permissions) du type :
 - → "le sujet s a la permission de réaliser l'action a sur l'objet o"
- La politique d'autorisation par défaut est fermée
 - ⇒ par défaut tous les accès sont interdits
 - → "tout ce qui n'est pas explicitement autorisé est interdit"

- Le règlement est formalisé à l'aide d'une matrice de contrôle d'accès
 - les lignes représentent les sujets
 - les colonnes représentent les objets
 - une cellule (intersection d'une ligne et d'une colonne) contient l'ensemble des actions qu'un sujet a la permission d'effectuer sur un objet
- Le modèle HRU a été implanté dans la plupart des systèmes d'exploitation actuels tels que Windows ou Unix

- La matrice n'est pas directement implanté; il existe en fait deux approches selon que l'implantation repose sur une décomposition en colonnes ou en ligne de la matrice :
 - la décomposition en colonnes consiste à associer à chaque objet un descripteur appelé liste de contrôle d'accès (ou ACL 10)
 - une ACL représente l'ensemble des sujets ayant des droits d'accès sur l'objet considéré avec pour chaque sujet l'ensemble des actions que ce sujet peut réaliser sur l'objet
 - la décomposition en lignes consiste à associer à chaque sujet une liste de capacités
 - → un ensemble de capacités associé à un sujet représente l'ensemble des objets auxquels le sujet considéré a accès avec pour chaque objet la liste des actions que peut réaliser le sujet

	Sam	Joe	Code	Data
Sam			read, write, execute	read,write
Joe			read, execute	read

ACL

- \rightarrow (Code, (Sam, (r, w, x)), (Joe, (r, x)))
- \rightarrow (Data, (Sam, (r,w)), (Joe, (r)))

Capacités

- $\rightarrow \langle Sam, (Code, (r, w, x)), (Data, (r, w)) \rangle$
- \rightarrow (Joe, (Code, (r,x)), (Data, (r)))

BUT3 Info - Anglet - 2025

- Notion de propriétaire
 - le propriétaire d'un objet est celui qui a créé l'objet
 - le propriétaire d'un obiet dispose de tous les droits sur l'obiet
 - le propriétaire d'un objet peut déléguer à un autre sujet les droits sur son objet

- Le modèle d'administration du modèle HRU consiste en un ensemble de règles définissant dans quelles conditions la matrice peut être modifiée; ces règles utilisent les primitives suivantes :
 - donner un droit r à un sujet s sur un objet o
 - créer un sujet s
 - → ajouter une ligne et une colonne car le sujet est aussi un objet
 - créer un objet o
 - → ajouter une colonne
 - enlever un droit r à un sujet s sur un objet o
 - détruire un sujet s
 - détruire un objet o

• Le modèle HRU a été fréquemment implémenté

```
Unix
```

- objets = fichiers/répertoires
- actions = $\{r, w, x\}$
- permissions représentées sous forme d'ACL
- administration → commande chmod

SQL

- objets = tables/vues
- actions = {select,update,delete,insert}
- administration → commandes grant et revoke

- Avantages du modèle HRU
 - simple, souvent implémenté
 - → Unix, Windows, SQL,...
 - administration décentralisée de la règlementation
- Limites du modèle HRU : règlement complexe à exprimer et à administrer
 - énumération des autorisations (sujet, action, objet)
 - → fastidieux, coûteux en mémoire
 - ⇒ constitution de groupes d'utilisateurs pour réduire la taille de la matrice
 - → maintenance des groupes délicate car un sujet peut appartenir à plusieurs groupes
 - mise à jour du règlement à chaque création de sujet et d'objet


- Limites du modèle HRU
 - problème de la fuite des droits (safety)
 - → considérant un état de la matrice, il est impossible de s'assurer qu'un sujet ne pourra jamais recevoir un droit particulier sur un certain objet
 - vulnérable aux attaques par cheval de Troie
 - → le modèle HRU est vulnérable aux attaques par cheval de Troie effectuant des recopies de fichiers (cf. sécurité multi-niveaux)
 - → défaut aggravé par le fait que les systèmes informatiques sont maintenant tous interconnectés (Internet)

- Le modèle RBAC ¹¹ propose de structurer le règlement autour du concept de rôle
 - → un rôle est un concept organisationnel structurant les sujets
 - des rôles sont affectés aux utilisateurs conformément à la fonction que ces utilisateurs jouent dans l'organisation
 - les autorisations (droits d'effectuer des actions sur des objets) sont affectées aux rôles
- Le modèle RBAC ne considère que des autorisations positives et suppose une politique par défaut fermée

- Le modèle RBAC introduit la notion de session
 - tout utilisateur doit initier une session avant de pouvoir accéder aux objets
 - dans le cadre de cette session il peut activer un ou plusieurs rôles parmi tous les rôles qui lui ont été attribués
 - → les droits (privilèges) de l'utilisateur seront alors les droits appartenant au(x) rôle(s) activé(s)
- Les rôles peuvent être organisés hiérarchiquement
 - ⇒ les rôles héritent des autorisations des rôles hiérarchiquement inférieurs Ex : "cardiologue" et "radiologue" héritent de "médecin"

- Le modèle RBAC introduit la notion de contrainte permettant de spécifier des réglementation de type séparation de tâches
 - une séparation de tâches **statique** prévoit que 2 rôles (par exemple médecin et infirmier) ne peuvent pas être assignés à un même utilisateur
 - une séparation de tâches **dynamique** prévoit que 2 rôles (par exemple médecin libéral et chirurgien) ne peuvent être activés en même temps par un même utilisateur

- Le modèle RBAC initial ne définissait pas de modèle d'administration
 - → en particulier, il ne prévoyait pas qui avait le droit de créer et mettre à jour les rôles
- Pour combler cette lacune, le modèle ARBAC (Administrative Role Based Access Control) a été proposé
 - le modèle ARBAC est un modèle d'administration pour le modèle RBAC
 - il est lui aussi basé sur les rôles

- Avantages du modèle RBAC
 - structuration du règlement de sécurité
 - de plus en plus implémenté
 - → versions récentes de SQL
 - → Unix Solaris v8
 - → API Authorization Manager RBAC de Windows Server 2003
- Inconvénients
 - ce modèle est toujours vulnérable aux attaques par cheval de Troie
 - il nécessite de mettre en place une procédure d'administration des rôles

- Les systèmes d'information actuels devenant de plus en plus sophistiqués, de nouveaux modèles de sécurité sont apparus
- Les nouveaux modèles dérivés de HRU et RBAC introduisent de nouvelles possibilités
 - → workflows, vues, contextes,...

Contextes

- En pratique, de nombreuses autorisations ne sont pas statiques mais dépendent de conditions qui, si elles sont satisfaites, permettent d'activer dynamiquement les autorisations
- → On parle d'autorisations contextuelles
 - contexte temporel → permission pendant les heures de travail
 - contexte géographique → permission uniquement à l'intérieur de l'enceinte sécurisée
 - contexte provisionnel → permission si d'autres actions ont été réalisées comme dans le cas d'un workflow
- Pour prendre en compte ces besoins, différents modèles à base de règles ont été définis (modèles de type Rule-BAC)
 - un règlement correspond alors à un ensemble de règles du type condition → permission

Modèles de contrôle d'accès discrétionnaires Interdictions

- De nouveaux modèles de contrôle d'accès permettent d'exprimer des autorisations négatives (interdictions) sont apparus
- Utiliser des interdictions peut souvent répondre à un besoin
 - certaines règlementations sont plus faciles à exprimer à l'aide d'interdictions
 - → vidéo interdite au moins de 18 ans
 - combiner des permissions et des interdictions permet de spécifier de manière concise des autorisations souffrant d'exceptions
 - 1 les infirmiers ont l'interdiction d'accéder au dossier médical des patients
 - en situation d'urgence, les infirmiers ont la permission d'accéder au dossier médical du patient

Modèles de contrôle d'accès discrétionnaires Interdictions

- Utiliser simultanément des permissions et des interdictions peut créer des conflits dans la règlementation
 - → dans l'exemple précédent, la règle 1 est en conflit avec la règle 2 dès lors que nous sommes dans un contexte d'urgence
- Pour résoudre ces conflits diverses approches ont été proposées :
 - les interdictions (ou les permissions) l'emportent toujours
 - les règles reçoivent des niveaux de priorité
 - le plus spécifique l'emporte
 - ordre dans lequel les règles sont écrites (first-matching applies)

- Actuellement, il n'existe pas de modèle de contrôle d'accès permettant de répondre à tous les besoins de sécurité énoncés
- Néanmoins le modèle OrBAC 12 est certainement un des modèles de contrôle d'accès les plus complets

https://motorbac.sourceforge.net/

Plan du cours

- 1 Introduction à la Sécurité Informatique
 - Présentation
 - Critères d'évaluation
 - Modèles de sécurité
 - Modèles de contrôle d'accès discrétionnaires
 - Modèles de contrôle d'accès obligatoires
 - Modèles de contrôle d'usage
 - Implémentation
 - Oracle
 - Exemples

- Depuis 1975 on sait que les modèles de contrôle d'accès ne permettent pas de prendre en compte les applications piégées par un cheval de Troie (opérant par recopie de fichiers)
- Afin de prendre en compte cette possibilité, des modèles dits de contrôle des flux ont été définis parallèlement à la définition des modèles de contrôle d'accès
- Le premier modèle de contrôle des flux est le modèle de Bell & LaPadula (1975) (cf. sécurité multi-niveaux)
- D'autres modèles plus sûrs que le modèle de Bell & LaPadula ou répondant à des objectifs différents ont été proposés depuis
 - → non Interférence, Bell & LaPadula étendu, causalité, Biba,...

- Appelés modèles obligatoires car le règlement de sécurité est simple et s'impose à tous les utilisateurs (il ne contient pas de règle adressant un utilisateur en particulier)
- Pour comprendre l'intérêt des modèles de contrôle des flux, il est nécessaire de revenir à la notion de sujet :
 - → un sujet est un **utilisateur** ou un **processus** s'exécutant pour le compte d'un utilisateur

- Tous les modèles de sécurité font implicitement les hypothèses suivantes sur les sujets :
 - un utilisateur peut potentiellement chercher à violer le règlement en tentant d'accéder à des objets pour lesquels il n'a pas d'autorisation
 - un utilisateur est supposé de confiance
 - \Rightarrow un utilisateur ne va pas délibérément divulguer de l'information à laquelle il a légalement accès
 - la plupart des processus ne sont pas de confiance car ils peuvent être potentiellement piégés et contenir un cheval de Troie
 - pb : un processus hérite des droits de l'utilisateur pour le compte duquel il s'exécute...
 - les seuls processus supposés de confiance sont ceux implantant les mécanismes de sécurité (les contrôles d'accès par exemple)

Modèles de contrôle d'accès obligatoires Cheval de Troie

- Considérons un médecin qui utiliserait une application médicale piégée
 - ⇒ le cheval de Troie pourrait, à l'insu du médecin, transmettre le contenu d'un dossier médical par Internet à une personne non autorisée
- Les modèles de contrôle d'accès ne permettent pas d'empêcher de telles actions malveillantes
 - en effet le piège introduit dans l'application médical ne viole pas la réglementation de sécurité
 - le médecin (et donc l'application médicale) a le droit d'accéder à un dossier médical
 - le médecin (et donc l'application médicale) a le droit d'accéder à Internet (à un dictionnaire médical en ligne par exemple)

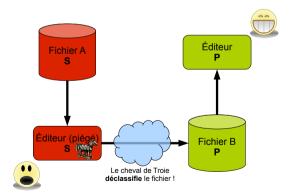
Sécurité multi-niveaux

- Objectif de sécurité : confidentialité
- Système informatique représenté par le modèle Sujet-Objet
 - chaque sujet reçoit un niveau d'habilitation
 - → Public, Confidentiel, Secret....
 - chaque objet reçoit un niveau de classification
 - → Public, Confidentiel, Secret,...
- Règlement de sécurité (1 phrase)
 - un sujet s est autorisé à connaître la valeur de l'objet o si et seulement si hab(s) ≥ class(o)
 - ⇒ un utilisateur habilité C aura le droit de connaître une information classifiée P ou C mais n'aura pas le droit de connaître une information classifiée S

Sécurité multi-niveaux

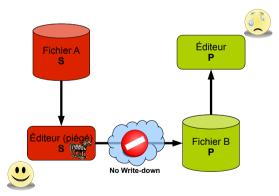
 Modèle de Bell & LaPadula ⇒ les deux propriétés suivantes sont nécessaires (mais pas suffisantes) pour garantir le règlement de sécurité :

No Read-up un sujet s ne peut **lire** le contenu d'un objet o que si $hab(s) \ge class(o)$


⇒ un utilisateur habilité C a le droit de lire une information classifiée P ou C mais n'a pas le droit de lire une information classifiée S

No Write-down un sujet s ne peut modifier le contenu d'un objet o que si $hab(s) \le class(o)$

⇒ un utilisateur habilité C a le droit de modifier une information classifiée C ou S mais n'a pas le droit de modifier une information classifiée P


Sécurité multi-niveaux

Cheval de Troie

Sécurité multi-niveaux

Avec le modèle Bell & LaPadula

Sécurité multi-niveaux

- Un utilisateur habilité à un niveau I peut initier une session à tout niveau dominé par le niveau I
 - ex : un utilisateur habilité Secret se connecte au niveau Secret pour accéder à des informations secrètes mais se connecte au niveau Public pour modifier des informations publiques
 - ⇒ permet de déclassifier certaines informations

- Avantages des modèles de contrôle de flux :
 - permettent de lutter contre les chevaux de Troie opérant par recopie de fichiers
 - ⇒ procurent un niveau de sécurité supérieur aux modèles de contrôle d'accès
- Inconvénients :
 - le règlement est très rigide
 - modèles généralement réservés à des usages militaires
 - implémentation plus complexe

Autres modèles

- Les deux conditions de modèle de Bell & LaPadula sont nécessaires mais pas suffisantes
 - les modèles de Non Interférence et de Causalité prennent en compte beaucoup plus de pièges que le modèle de Bell & LaPadula mais ils sont pratiquement impossibles à implémenter
 - le modèle de Biba est l'équivalent du modèle de Bell & LaPadula pour l'intégrité
- ⇒ Il est nécessaire de contrôler tous les flux d'information :
 - contrôle des canaux cachés
 - contrôle de l'inférence

- Un canal caché est un canal de communication non prévu mais pouvant potentiellement servir à communiquer de l'information de facon illégale
- Les canaux cachés résultent très souvent de particularités liées à l'implémentation
 - ⇒ il est difficile d'en tenir compte dans un modèle théorique représentant un certain niveau d'abstraction

- Exemples de canaux cachés :
 - un processus piégé exécuté au niveau S peut accéder à une ressource quelconque pour transmettre des infos sensibles; un sujet P peut observer ces accès et en déduire ces infos sensibles
 - un processus piégé exécuté au niveau S peut moduler son temps d'exécution pour transmettre des infos sensibles → canal caché temporel
 - on peut observer la consommation d'énergie d'un processus pour en déduire des infos sensibles

Ils espionnent un ordinateur grâce aux ondes générées par...l'USB

- Fin 2013 → Edward Snowden → NSA → COTTONMOUTH
 - Article 01net du 01/09/2016
 - Un petit mouchard matériel qui vient se loger dans une prise USB et qui permet d'exfiltrer des données par ondes radio d'un ordinateur qui n'est pas connecté sur un réseau informatique
 - Alternative USBee: Le bus de données en USB s'appuie sur deux fils électriques dont la tension peut s'inverser. Si la tension s'inverse, alors c'est un «0», sinon c'est un «1».
 - Les chercheurs ont alors eu l'idée de n'envoyer que des zéros vers le matériel USB → la succession de changements de tension crée une belle onde électromagnétique.

Ils espionnent un ordinateur grâce aux ondes générées par...l'USB (suite)

- Moduler la fréquence avec des zéros
 - Les chercheurs ont alors développé un algorithme qui permet de moduler la fréquence de cette onde en jouant sur la longueur des séries de «0» envoyées.
 - Répéter par exemple un bloc constitué d'une douzaine de «0» et d'une douzaine de «1» (111111111111100000000000) donnera une fréquence différente qu'une banale succession de «0» (000000000000000000000).
 - La modulation de la fréquence permet ensuite de coder le message à exfiltrer. Pour capter le message, il suffit d'avoir une antenne et un logiciel d'analyse spectral tel que GNU Radio. Ce qui représente un investissement d'une trentaine de dollars.

Ils espionnent un ordinateur grâce aux ondes générées par...l'USB (suite)

Débit & utilisation

- Les tests effectués ont permis de faire passer des messages d'une pièce à l'autre avec un débit compris entre 20 et 80 octets par seconde → regarder un film en HD est donc totalement hors de portée, mais c'est suffisant pour envoyer une clé de chiffrement en peu de temps.
- COTTONMOUTH n'est pas encore à mettre au placard pour autant, car ce mouchard de la NSA est capable non seulement d'émettre, mais aussi de recevoir des données. Ce qui n'est pas le cas d'USBee $\rightarrow 2^{\text{ème}}$ version?

Présentation Critères d'évaluation Modèles de sécurité Implémentation

Contrôle des canaux cachés

Ils espionnent un ordinateur grâce aux ondes générées par...l'USB (fin)

TOP SECRET//COMINT//REL TO USA, FVEY

COTTONMOUTH-I

ANT Product Data

(TS//SI//REL) COTTONMOUTH-I (CM-I) is a Universal Serial Bus (USB) hardware implant which will provide a wireless bridge into a target network as well as the ability to load exploit software onto target PCs.

(TS/ISI/IREL) CM-I will provide air-gap bridging, software persistence capability, "in-field" reprogrammability, and covert communications with a host software implant over the USB. The RE link will enable command and data infiltration and exfiltration. CM-I will also communicate with Data Network Technologies (DNT) software (STRATBL/ARRE) through a covert channel implemented on the USB, using this communication channel to pass commands and data between hardware and software implants. CM-I will be a GENIE-compliant implant hased no CHMMFVPOOI.

(TSI/SI/IFEL) CM-I conceals digital components (TRINITY), USB 1.1 FS hub, switches, and nOWLERMONDKEY (HM) RF Transceiver within the USB Series A cable connection (MCCCASIN is the version permanently connected to a USB keyboard. Another version can be made with an unmodified USB connector at the other end. CM-I has the ability of communicate to other CM devices over the RF link using an over-the-air protocol called SPFCUILATION.

08/05/08

Contrôle des canaux cachés Câble USB O.MG

- Un "simple" câble USB... (➡)
 - ... mais avec un implant
 - dispo en version basic (\$119.99) ou en version elite (\$179.99)

O MG CABLE FEATURES

Fasy WiFi Control

Full control with your web browser. Desktop or mobile. Keystroke Injection

Instant DuckyScript payloads. No compiling, just click run!

Lots of Payload slots Basic model comes with 8 slots. Fifte has extra storage allowing up to

200 slots!

Global Keymaps

With 192 keymaps already built in, you can target machines across the

Built in IDE

The WebUI not only provides 100% of the controls, but also gives you helpful feedback to catch syntax errors while rapidly building payloads

Cables with a USB-C active end. or Directional C to C. can automatically transmit to mobile devices with a USB-C connector. Connect just the active end!

The implant stays dormant until a payload is deployed. No logs. No detections. The cable behaves just like a normal USB 2.0 cable. (Su charging, 480mps data transfer)

Plus & Elite contain a passive hardware keylogger designed for Full Speed USB keyboards with detachable cables. Store up to 650,000 keystrokes For tested keyboards & more info go here

Covert Ev61

Filte models: send data from the boot back into the OMC Cable over a covert channel

Flite models: setup a hidirectional tuppel from Target Host > 0 MG > Control Machine

Elite models: Manage your O.MG Cables with a network attached C2.

Make your legal team happy by ensuring sensitive payloads & loot are gone, and the O.MG Cable is fully inert, (recoverable with O.MG Programmer)

Trigger payloads or other actions based on location. Keep your tool from falling out of scope! Ex: self-destruct if someone takes the O.MG Cable


Trigger payloads at long range with a single beacon

Hack RF → Flipper Zero

 Le Flipper Zero se présente comme le couteau suisse des geeks, des hackers et des testeurs, avec l'ambition d'exposer les vulnérabilités informatiques. Une sorte de « rayon X pour la cybersécurité ». Son code est open-source, ce qui permet à quiconque de l'examiner.

Contrôle des canaux cachés Hack RF → SDR (Software Defined Radio)

- SDR = radio logicielle → boîtier permettant de recevoir et d'envoyer des données radio depuis un ordinateur
 - HackRF One
 - Adalm-Pluto

Et encore d'autres infos...

- Article "Comment la NSA peut bidouiller votre iPhone, votre wifi, votre PC, votre écran..." (\$\sigma\$)
- En IoT, comment usurper l'identité d'un capteur RF 433MHz pour envoyer de fausses informations au récepteur
 - tutoriel utilisant, entre autres, le Flipper Zero (□)
 - stage BUT2 R&T 2024 (□)

Contrôle de l'inférence

- Un utilisateur peut déduire des informations sensibles en utilisant des informations qu'il est autorisé à connaître
 - ex : un médecin est tenu au secret médical pourtant il délivre une ordonnance qui peut être aisément lue par des tiers (pharmacien, famille, clients dans la pharmacie....)
 - → la lecture de cette ordonnance peut révéler, par déduction, la nature de la maladie du patient
- ⇒ Problème difficile à résoudre complètement dans la mesure où il est difficile de recenser toutes les connaissances possédées par l'utilisateur

Contrôle de l'inférence

- Pour déduire (ou inférer) des informations sensibles un utilisateur peut utiliser :
 - des informations présentes dans le système informatique et auxquelles il a légalement accès
 - ⇒ contrôle de l'inférence possible
 - des connaissances générales non représentées dans le système informatique
 - ⇒ contrôle de l'inférence difficile

Plan du cours

- 1 Introduction à la Sécurité Informatique
 - Présentation
 - Critères d'évaluation
 - Modèles de sécurité
 - Modèles de contrôle d'accès discrétionnaires
 - Modèles de contrôle d'accès obligatoires
 - Modèles de contrôle d'usage
 - Implémentation
 - Oracle
 - Exemples

- L'objectif du contrôle d'usage est de contrôler non seulement l'accès au document mais également l'usage qui en est fait
 - ex : initialement, le contrôle d'usage visait principalement (mais pas seulement) à contrôler la recopie des fichiers
- Idée ¹³ : contrôle d'usage ≡ obligations

- Les modèles de contrôle d'usage dont la première version est le modèle UCON 14 permettent d'énoncer des règles de sécurité qu'il est difficile d'implanter avec des mécanismes classiques de contrôle d'accès :
 - → l'acheteur de ce morceau de musique ne pourra l'écouter que 10 fois au plus
 - \rightarrow l'utilisateur de ce document ne pourra effectuer qu'une seule copie de sauvegarde
 - → le médecin aura l'obligation de mettre à jour le dossier médical du patient avant de pouvoir imprimer l'ordonnance

- La mise en œuvre d'un règlement de contrôle d'usage se fait généralement en utilisant des techniques de DRM
 - NB : les DRM se caractérisent par le fait que les contrôles de sécurité s'effectuent non pas du coté du serveur mais du coté du client
- La partie du logiciel client qui effectue les contrôles de sécurité (noyau de sécurité) doit être de confiance
 - → par définition, le noyau de sécurité ne peut être contourné et est dépourvu de failles, vulnérabilités, cheval de Troie,...

- Applications des DRM :
 - Initialement orientés vers la protection des droits d'auteurs et des intérêts commerciaux des distributeurs de contenus multimédia (films, musique,...)
 - Maintenant, les DRM sont de plus en plus utilisés dans des applications dont l'objectif est de contrôler la distribution de contenus sensibles (Entreprise-DRM)
 - ex: FLUOR, projet ANR-SESUR (2008-2011)

 convergence du contrôle de FLux et d'Usage dans les ORganisations

- Retour sur le modèle OrBAC :
 - → contrôle d'accès.
 - → contrôle d'usage
- La politique de sécurité permet :
 - permissions
 - interdictions
 - obligations
 - règles contextuelles

https://motorbac.sourceforge.net/

BUT3 Info - Anglet - 2025

Plan du cours

- 1 Introduction à la Sécurité Informatique
 - Présentation
 - Critères d'évaluation
 - Modèles de sécurité
 - Modèles de contrôle d'accès discrétionnaires
 - Modèles de contrôle d'accès obligatoires
 - Modèles de contrôle d'usage
 - Implémentation
 - Oracle
 - Exemples

Mise en œuvre des modèles

• Approche dite du noyau de sécurité (ou TCB 15)

NB : côté serveur ou côté client (cf. DRM)

• Le noyau est supposé fiable (trusted), i.e. dépourvu de :

R5D8 - Cybersécurité

- failles
- vulnérabilités
- pièges
- ...
- ⇒ Idéalement il doit donc être le plus petit possible

Mise en œuvre des modèles

- Les fonctions du noyau de sécurité sont :
 - → authentification des utilisateurs
 - → contrôle des accès (ACL, No Read-up, No Write-down,...)
 - → chiffrement & déchiffrement de données
 - **→** ...
- ⇒ Ces mécanismes de sécurité doivent garantir le règlement de sécurité (policy enforcement)

Plan du cours

- Introduction à la Sécurité Informatique
- Sécurité Bases de Données
 - Introduction
 - Confidentialité
 - Intégrité
- Gestion des Risques
- 4 Droit & Numérique
- Conclusion

Rappel

- Selon les ITSEC (critères européens), la sécurité informatique recouvre 3 objectifs de sécurité :
 - la confidentialité → prévention de la divulgation non autorisée de l'information
 - l'intégrité → prévention de la modification non autorisée de l'information
 - la disponibilité → prévention d'un refus d'accès à une ressource ou à une information normalement autorisée (déni de service)
- Une violation de sécurité peut être accidentelle ou résulter d'une action malveillante
 - ⇒ un SGBD procure certains mécanismes permettant d'assurer un certain degré de sécurité

SGBD & mécanismes de sécurité

- Pour assurer la confidentialité des informations
 - cryptographie
 - contrôle d'accès & assignation des droits (privilèges)
 (cf. GRANT et REVOKE)
 - définition de rôles
 - utilisation de vues
- Pour assurer l'intégrité des informations
 - contraintes d'intégrité & mécanismes associés
 - gestion des transactions (concurrence d'accès)
 - contrôle d'accès & assignation des droits (privilèges)
 (cf. GRANT et REVOKE)
 - reprise après panne

BUT3 Info - Anglet - 2025

Plan du cours

- Modèles de contrôle d'accès discrétionnaires.
- Modèles de contrôle d'accès obligatoires
- Modèles de contrôle d'usage
- Sécurité Bases de Données
 - Introduction
 - Confidentialité
 - Oracle
 - Exemples

Privilèges & vues

- Dans cette partie du cours nous intéresserons uniquement aux mécanismes suivants :
 - assignation de droits (commandes SQL GRANT et REVOKE)
 - définition de rôles
 - utilisation de vues
- Dans un SGBDR standard, le mécanisme d'assignation de droits permet au DBA d'accorder des privilèges à des utilisateurs
 - privilèges systèmes
 - privilèges sur des objets

Privilèges systèmes

- Quelques privilèges systèmes :
 - CREATE TABLE
 - CREATE USER
 - CREATE VIEW
 - SELECT ANY TABLE
 - ADMIN OPTION FOR (system_right)
 privilège permettant d'octroyer/retirer des privilèges systèmes

Privilèges sur des objets

- Quelques objets :
 - tables
 - vues
 - index
- Quelques privilèges sur des objets :
 - DELETE FROM (table)
 - INSERT INTO (table)
 - SELECT FROM \(\langle table \| \text{view} \rangle
 - UPDATE (table)
 - GRANT OPTION FOR (object_right)
 droit d'octroyer/retirer des privilèges sur des objets

Privilèges systèmes

NB : Les règles suivantes sont basées sur le système d'assignation des privilèges d'Oracle

- Qui peut octroyer un privilège système?
 - le DBA qui possède tous les privilèges
 - un utilisateur détenteur d'un privilège système avec l'ADMIN OPTION peut octroyer ce privilège
- Qui peut révoquer un privilège système?
 - le DBA
 - un utilisateur détenteur d'un privilège système avec l'ADMIN OPTION peut retirer ce privilège à un utilisateur descendant dans le graphe d'autorisation de ce privilège

Privilèges systèmes

• Exemple :

- DBA octroie P_1 (with ADMIN) à user₁
- $user_1$ octroie P_1 à $user_2$ (with ADMIN)
- user2 octroie P1 à user3
- user₂ peut révoquer P₁ de user₃ mais pas de user₁
- $user_1$ peut révoquer P_1 de $user_2$ ou $user_3$ mais pas de DBA!

$$DBA \xrightarrow[ADMIN]{P_1} user_1 \xrightarrow[ADMIN]{P_1} user_2 \xrightarrow{P_1} user_3$$

Privilèges objets

- Qui peut octroyer un privilège objet?
 - le propriétaire (i.e. le créateur de l'objet) qui possède tous les privilèges sur l'objet
 - un utilisateur détenteur d'un privilège objet avec la GRANT OPTION
- Qui peut révoquer un privilège objet?
 - le DBA
 - le détenteur original du privilège uniquement

Révocation en cascade

- Il n'y a pas d'effet en cascade pour la révocation d'un privilège système, que ce privilège ait été octroyé avec l'ADMIN OPTION ou non
- Exemple :
 - → DBA octroie CREATE TABLE à user₁
 - \rightarrow user₁ octroie CREATE TABLE à user₂
 - → DBA révoque CREATE TABLE de user₁
 - → user₂ conserve CREATE TABLE

Révocation en cascade

- Il y a effet en cascade pour la révocation d'un privilège objet, que ce privilège ait été octroyé avec la GRANT OPTION ou non
- Exemple :
 - \rightarrow DBA octroie P_1 (with GRANT) à user₁
 - \rightarrow user₁ octroie P_1 à user₂ (with GRANT)
 - \rightarrow user₂ octroie P_1 à user₃
 - \rightarrow si user₁ révoque P_1 de user₂ alors P_1 est aussi révoqué de user₃

Révocation

NB: Les privilèges ADMIN OPTION et GRANT OPTION ne peuvent être retirés de façon sélective

- Exemple :
 - \rightarrow DBA octroie P_1 (with ADMIN) à user₁
 - pour retirer l'ADMIN OPTION de user₁ DBA doit d'abord retirer P₁ de user₁ puis octrover de nouveau P₁ à user₁

Commandes SQL

Octroyer/révoquer des privilèges systèmes

```
GRANT <right(s)> TO <user(s)> | PUBLIC [WITH ADMIN OPTION]
REVOKE <right(s)> FROM <user(s)> | PUBLIC
```

Octroyer/révoquer des privilèges objets

Rôles

- Afin de simplifier l'administration des privilèges il est possible de définir des rôles
- Commandes SQL sur les rôles :
 - création d'un rôle

- assignation de privilèges aux rôles : les commandes GRANT et REVOKE vues précédemment peuvent prendre un rôle en paramètre à la place du nom d'un utilisateur
- affectation de rôles aux utilisateurs (ou à d'autres rôles)

Rôles

- Activation/désactivation de rôles
 - la commande "SET ROLE <role>" permet d'activer ou de désactiver un rôle pour la session courante
 - lorsqu'un utilisateur ouvre une session sous Oracle, tous les rôles par défaut sont activés; les autres rôles doivent être activés via la commande SET ROLE
 - la commande "SET ROLE NONE" désactive tous les rôles pour la session courante (y compris tous les rôles par défaut)

Granularité des privilèges

- Le mécanisme de contrôle d'accès par défaut pour Oracle SQL est basé sur la notion d'objet Oracle
 - ⇒ si un utilisateur dispose du privilège "SELECT ON Employes" alors il lui est possible de voir toutes les lignes de la table "Employes"
- ⇒ Pour restreindre l'accès à certaines lignes et/ou masquer certaines colonnes
 - → utilisation de la notion de vues

Vues

- Une vue est une table virtuelle résultat d'une requête
- Une vue peut être utilisée dans des requêtes au même titre qu'une table permanente
- Par contre, la mise à jour au travers d'une vue est soumise à des restrictions
- Commandes SQL pour créer/supprimer une vue :

```
CREATE VIEW <name> [(column_name_list)] AS <request>
DROP VIEW <name>
```

Vues

Requêtes imbriguées dans la clause from

```
Total des soldes et des emprunts pour chaque client
select temp1.nom,tot1,tot2
       select nom, sum (solde) tot1 from compte group by nom
       union
       (select nom, 0 from client
        where nom not in (select nom from compte))
     ) as temp1
       select nom, sum (montant) tot2 from emprunt group by nom
       union
       (select nom, 0 from client
        where nom not in (select nom from emprunt))
     ) as temp2
where temp1.nom = temp2.nom;
```

Plan du cours

- Modèles de contrôle d'accès discrétionnaires
- Modèles de contrôle d'accès obligatoires
- Modèles de contrôle d'usage
- Sécurité Bases de Données
 - Introduction
 - Confidentialité
 - Oracle
 - Exemples
 - Intégrité

• Table Patient

Login	Nom	Prenom	Age	Sexe
pfranck	Franck	Patricia	60	F
mrobert	Robert	Martin	35	М

• Table Diagnostic

Login	Maladie	
pfranck	ulcere	
mrobert	pneumonie	
mrobert	asthme	

Réglementation médicale (© Alban Gabillon / UPF)

- Règlement de sécurité :
 - les médecins ont la permission de consulter et modifier les deux tables sans restriction
 - les secrétaires ont la permission de voir la table patient
 - les infirmières ont la permission de voir les deux tables
 - les patients ont la permission de voir les informations qui les concernent

Réglementation médicale (© Alban Gabillon / UPF)

Sujets

- les médecins
- les infirmières
- les secrétaires
- les patients

Objets

- les 2 tables
- les tuples de chaque table

Actions

- SELECT
- INSERT
- UPDATE
- DELETE

Réglementation médicale (© Alban Gabillon / UPF)

• Création des rôles :

```
CREATE ROLE Medecin;
CREATE ROLE Infirmiere;
CREATE ROLE Secretaire;
CREATE ROLE Malade;
```

Assignation des droits à chaque rôle :

```
GRANT ALL ON Patient TO Medecin;
GRANT ALL ON Diagnostic TO Medecin;
GRANT SELECT ON Patient TO Infirmiere;
GRANT SELECT ON Diagnostic TO Infirmiere;
GRANT SELECT ON Patient TO Secretaire;
```

⇒ pb pour la dernière règle car le niveau de granularité du modèle de sécurité de SQL est la table et non le tuple

Réglementation médicale (© Alban Gabillon / UPF)

Solution: créer 2 vues
 CREATE VIEW VPatient AS
 SELECT * FROM Patient where Login=user;
 CREATE VIEW VDiagnostic AS
 SELECT * FROM Diagnostic where Login=user;
 GRANT SELECT ON VPatient to Malade;
 GRANT SELECT ON VDiagnostic to Malade;

Réglementation médicale (© Alban Gabillon / UPF)

• Affectation des rôles aux utilisateurs :

```
GRANT Medecin TO ...
GRANT Infirmiere TO ...
GRANT Secretaire TO ...
GRANT Malade TO pfranck;
GRANT Malade TO mrobert;
```

Réglementation obligatoire (© Alban Gabillon / UPF)

- Implémentation d'un règlement multi-niveaux
 - table multi-niveaux AIRCRAFT

Name	Туре	Speed	Range	Nuclear_bomb
F16	Supersonic	Mach 2.05	2000 km	NO
Mirage	Supersonic	Mach 2.2	2000 km	NO
Rafale	Supersonic	Mach 1.8	4000 km	YES
Firefox	Hypersonic	Mach 6	6000 km	YES

- niveau de granularité = valeur attribut
 - → données publiques
 - → données confidentielles
 - → données secrètes

Réglementation obligatoire (© Alban Gabillon / UPF)

- Décomposition en 3 tables mono-niveau
 - tout ce qui est classifié Public se retrouve dans la table publique, la table confidentielle et la table secrète
 - → table UNCLASSIFIED_AIRCRAFT
 - tout ce qui est classifié Confidentiel se retrouve dans la table confidentielle et la table secrète
 - → table CONFIDENTIAL_AIRCRAFT
 - tout ce qui est classifié Secret ne se trouve que dans la table secrète
 - → table SECRET_AIRCRAFT

Réglementation obligatoire (© Alban Gabillon / UPF

Table publique UNCLASSIFIED_AIRCRAFT

Name	Type	Speed	Range
F16	Supersonic	Mach 2.05	2000 km
Mirage	Supersonic	Mach 2.2	2000 km
Rafale	Supersonic	Mach 1.8	

Réglementation obligatoire (© Alban Gabillon / UPF)

Table publique UNCLASSIFIED_AIRCRAFT

Name	Type	Speed	Range
F16	Supersonic	Mach 2.05	2000 km
Mirage	Supersonic	Mach 2.2	2000 km
Rafale	Supersonic	Mach 1.8	RESTRICTED

→ RESTRICTED signifie que le niveau d'habilitation est insuffisant pour connaître la valeur de l'attribut

Réglementation obligatoire (© Alban Gabillon / UPF

• Table secrète CONFIDENTIAL_AIRCRAFT

Name	Туре	Speed	Range
F16	Supersonic	Mach 2.05	2000 km
Mirage	Supersonic	Mach 2.2	2000 km
Rafale	Supersonic	Mach 1.8	4000 km
Firefox			6000 km

Réglementation obligatoire (© Alban Gabillon / UPF

Table secrète CONFIDENTIAL_AIRCRAFT

Name	Type	Speed	Range
F16	Supersonic	Mach 2.05	2000 km
Mirage	Supersonic	Mach 2.2	2000 km
Rafale	Supersonic	Mach 1.8	4000 km
Firefox	Supersonic	Mach 2.5	6000 km

→ les valeurs de Type et de Speed pour le Firefox sont des mensonges (ou leurres) destinés à cacher l'existence de valeurs secrètes

Réglementation obligatoire (© Alban Gabillon / UPF)

• Table secrète SECRET_AIRCRAFT

Name	Туре	Speed	Range	Nuclear_bomb
F16	Supersonic	Mach 2.05	2000 km	NO
Mirage	Supersonic	Mach 2.2	2000 km	NO
Rafale	Supersonic	Mach 1.8	4000 km	YES
Firefox	Hypersonic	Mach 6	6000 km	YES

→ cette table contient toutes les données réelles

Réglementation obligatoire (© Alban Gabillon / UPF

- Implémentation du règlement multi-niveaux
 - → No Read-up
 - → No Write-down

```
Idée : Créer un rôle pour chaque niveau d'habilitation
```

```
CREATE ROLE PUBLIC;
CREATE ROLE CONFIDENTIEL;
CREATE ROLE SECRET;
```

Réglementation obligatoire (© Alban Gabillon / UPF)

- Assignation des privilèges
 - rôle PUBLIC

```
GRANT ALL ON UNCLASSIFIED AIRCRAFT TO PUBLIC;
```

• rôle CONFIDENTIEL

```
GRANT SELECT ON UNCLASSIFIED AIRCRAFT TO CONFIDENTIEL;
GRANT ALL ON CONFIDENTIAL AIRCRAFT TO CONFIDENTIEL;
```

rôle SECRET

```
GRANT SELECT ON UNCLASSIFIED_AIRCRAFT TO SECRET; GRANT SELECT ON CONFIDENTIAL AIRCRAFT TO SECRET;
GRANT ALL ON SECRET AIRCRAFT TO SECRET;
```

 Mécanismes de réplication d'un niveau bas vers un niveau haut assurés par des triggers

Plan du cours

- Modèles de contrôle d'accès discrétionnaires.
- Modèles de contrôle d'accès obligatoires
- Modèles de contrôle d'usage
- Sécurité Bases de Données
 - Introduction
 - Confidentialité
 - Oracle
 - Exemples
 - Intégrité

Intégrité

- Quand on parle de sécurité informatique, le 1^{er} objectif de sécurité qui nous vient à l'esprit est la confidentialité
 - → prévention de la divulgation non autorisée de l'information
- L'intégrité est toutefois un objectif de sécurité tout aussi important, surtout dans le cadre d'un SGBD
 - → "l'intégrité de l'information s'attache à protéger l'information contre toute altération qui conduirait à mettre de l'information erronée à disposition des personnes autorisées"

Intégrité & SGBD

- Contraintes d'Intégrité Référentielle (CIR)
 - générées "automatiquement" lors du passage du schéma E/A au schéma relationnel
 - correspond à la notion de foreign key en SQL
 - ⇒ garantit qu'une référence "pointe" vers une information qui existe
 - ex: CONSTRAINT etudOk FOREIGN KEY (numEtu) REFERENCES Etudiant(numEtu)
- Contraintes de validité
 - ⇒ conditionne la création/modification d'un tuple à la validité de certaines propriétés

```
ex : CONSTRAINT noteOk CHECK ((note>=0) and (note<=20))
```

Concurrence d'accès ⇒ transactions

- Une transaction telle qu'une réservation, un achat ou un paiement est mise en œuvre via :
 - → une suite d'opérations qui font passer la base de données d'un état A (antérieur à la transaction) à un état B (postérieur)
 - → des mécanismes permettent d'obtenir que cette suite soit à la fois Atomique, Cohérente, Isolée et Durable (ACID)
- Le concept de transaction s'appuie sur la notion de point de synchronisation (sync point) qui représente un état stable du système informatique considéré (en particulier de ses données)

Propriétés ACID

atomicité la suite d'opérations est indivisible

en cas d'échec en cours d'une des opérations, la suite d'opérations doit être complètement annulée (rollback) quel que soit le nombre d'opérations déjà réussies

cohérence le contenu de la base de données à la fin de la transaction doit être cohérent sans pour autant que chaque opération durant la transaction donne un contenu cohérent

un contenu final incohérent doit entraîner l'échec et l'annulation de toutes opérations de la transaction

Propriétés ACID

isolation lorsque deux transactions A et B sont exécutées en même temps, les modifications effectuées par A ne sont ni visibles par B, ni modifiables par B tant que la transaction A n'est pas terminée et validée (commit)

durabilité une fois validé, l'état de la base de données doit être permanent, et aucun incident technique (ex : crash) ne doit pouvoir engendrer une annulation des opérations effectuées durant la transaction

Lost updates

- Le système informatique d'une salle de cinéma (où les places ne sont pas numérotées) stocke le nombre de billets déjà vendus pour la séance
 - 100 billets ont déjà été vendus
 - la caisse 2 est en train d'en vendre trois autres
 - au même moment, la caisse 1 enregistre le remboursement de cinq billets, qui doivent donc être soustraits du total

Lost updates

• Chaque transaction (caisse 1 & caisse 2) est composée de plusieurs actions élémentaires

caisse 1

- 1 lire le nombre de billets vendus (100)
- rembourser 5 billets
- (100-5=95)
- 4 écrire la nouvelle valeur (95)

caisse 2

- 1 lire le nombre de billets vendus (100)
- vendre 3 billets
- (3) calculer la nouvelle valeur (100+3=103)
- écrire la nouvelle valeur (103)
- ⇒ L'entrelacement de ces 2 transactions peut entraı̂ner des erreurs

Lost updates

• Exemple d'exécution ne respectant pas les propriétés ACID

caisse 1	nb billets vendus	caisse 2
	100	

Lost updates

Exemple d'exécution ne respectant pas les propriétés ACID

caisse 1	nb billets vendus	caisse 2
	100	
lire le nombre de billets vendus → résultat=100	100	

Lost updates

Exemple d'exécution ne respectant pas les propriétés ACID

caisse 1	nb billets vendus	caisse 2
	100	
lire le nombre de billets vendus → résultat=100	100	
	100	lire le nombre de billets vendus → résultat=100

Lost updates

Exemple d'exécution ne respectant pas les propriétés ACID

caisse 1	nb billets vendus	caisse 2
	100	
lire le nombre de billets vendus → résultat=100	100	
	100	lire le nombre de billets vendus → résultat=100
rembourser 5 billets calculer la nouvelle valeur : 100-5=95 écrire la nouvelle valeur (95)	95	

Lost updates

Exemple d'exécution ne respectant pas les propriétés ACID

caisse 1	nb billets vendus	caisse 2
	100	
lire le nombre de billets vendus → résultat=100	100	
	100	lire le nombre de billets vendus → résultat=100
rembourser 5 billets calculer la nouvelle valeur : 100-5=95 écrire la nouvelle valeur (95)	95	
` '	103	vendre 3 billets calculer la nouvelle valeur : 100+3=103 écrire la nouvelle valeur (103)

 Entrelacement ⇒ la 1^{ère} maj est perdue ⇒ le résultat final est faux (103 au lieu de 98 billets effectivement vendus)

Lost updates

- Une solution possible pour éviter les mises à jour perdues
 - → utiliser un mécanisme de verrouillage des données
- Plusieurs types de verrous :
- partagé un verrou partagé peut être détenu simultanément par un nombre arbitraire de transactions
- exclusif un verrou exclusif ne peut être détenu que par une seule transaction à la fois; il est également exclusif par rapport aux verrous partagés
- Une transaction qui requiert un verrou déjà utilisé est bloquée jusqu'à ce que le verrou soit relâché

Lost updates

Exécution en utilisant un verrou exclusif

caisse 1	nb billets vendus	caisse 2
	100	

Lost updates

Exécution en utilisant un verrou exclusif

caisse 1	nb billets vendus	caisse 2
	100	
demander un verrou exclusif	• 100	

Lost updates

Exécution en utilisant un verrou exclusif

caisse 1	nb billets vendus	caisse 2
	100	
demander un verrou exclusif	• 100	
	• 100	demander un verrou exclusif
		→ bloquée

Lost updates

Exécution en utilisant un verrou exclusif

caisse 1	nb billets vendus	caisse 2
	100	
demander un verrou exclusif	• 100	
	• 100	demander un verrou exclusif → bloquée
lire le nombre de billets vendus → résultat=100	• 100	waiting

Lost updates

caisse 1	nb billets vendus	caisse 2
	100	
demander un verrou exclusif	• 100	
	• 100	demander un verrou exclusif → bloquée
lire le nombre de billets vendus → résultat=100	• 100	waiting
rembourser 5 billets calculer la nouvelle valeur : 100-5=95 écrire la nouvelle valeur (95)	• 95	waiting

Lost updates

caisse 1	nb billets vendus	caisse 2
	100	
demander un verrou exclusif	• 100	
	• 100	demander un verrou exclusif → bloquée
lire le nombre de billets vendus → résultat=100	• 100	waiting
rembourser 5 billets calculer la nouvelle valeur : 100-5=95 écrire la nouvelle valeur (95)	• 95	waiting
relâcher le verrou	95 ●	→ debloquée (obtient le verrou)

Lost updates

caisse 1	nb billets vendus	caisse 2
	100	
demander un verrou exclusif	• 100	
	• 100	demander un verrou exclusif → bloquée
lire le nombre de billets vendus → résultat=100	• 100	waiting
rembourser 5 billets calculer la nouvelle valeur : 100-5=95 écrire la nouvelle valeur (95)	• 95	waiting
relâcher le verrou	95 ●	→ debloquée (obtient le verrou)
	95 •	lire le nombre de billets vendus → résultat=95

Lost updates

caisse 1	nb billets vendus	caisse 2
	100	
demander un verrou exclusif	• 100	
	• 100	demander un verrou exclusif
		→ bloquée
lire le nombre de billets vendus → résultat=100	• 100	waiting
rembourser 5 billets calculer la nouvelle valeur : 100-5=95 écrire la nouvelle valeur (95)	• 95	waiting
relâcher le verrou	95 ●	→ debloquée (obtient le verrou)
	95 ●	lire le nombre de billets vendus → résultat=95
	98 •	vendre 3 billets calculer la nouvelle valeur : 95+3=98 écrire la nouvelle valeur (98)

Lost updates

caisse 1	nb billets vendus	caisse 2
	100	
demander un verrou exclusif	• 100	
	• 100	demander un verrou exclusif → bloquée
lire le nombre de billets vendus → résultat=100	• 100	waiting
rembourser 5 billets calculer la nouvelle valeur : 100-5=95 écrire la nouvelle valeur (95)	• 95	waiting
relâcher le verrou	95 ●	→ debloquée (obtient le verrou)
	95 •	lire le nombre de billets vendus → résultat=95
	98 •	vendre 3 billets calculer la nouvelle valeur : 95+3=98 écrire la nouvelle valeur (98)
	98	relâcher le verrou

Verrouillage de données

- L'utilisation de verrous permet de sérialiser les transactions
 - → l'exécution "entrelacée" des transactions est équivalente à leur exécution en série
 - → elles sont donc de fait isolées les unes des autres
- Nb : De tels mécanismes de verrouillage sont fournis par tous les systèmes de données usuels
 - pour les fichiers, par les verrous du système d'exploitation
 - pour la mémoire partagée, par les sémaphores
 - pour les bases de données, par des commandes spécifiques telles que la commande SQL LOCK TABLE

Gestion des transactions

- En SQL Oracle pur
 - → le démarrage de la transaction est implicite (dès qu'on fait une requête delete, insert ou update)
 - → la transaction se termine par COMMIT ou ROLLBACK
- Si les appels SQL sont encapsulés dans un langage de haut niveau, il peut y avoir des particularités liées au langage et/ou à l'API utilisés
 - ex: pour démarrer une transaction: "BEGIN", "START TRANSACTION", "SET TRANSACTION",...

Isolation

- Certains SGBD proposent différents niveaux d'isolation
 - serializable → le plus fort : le système donne l'illusion que toutes les transactions sont exécutées en série
 - repeatable reads → autorise les lectures en parallèle (commandes SELECT), et rejette les écritures (en provoquant un rollback de la transaction) si une situation de mise à jour perdue est détectée
 - ⇒ pb : phantom reads
 - **read committed** → les verrous de lecture sont relâchés dès que la commande SELECT est terminée
 - ⇒ pb : non-repeatable reads
 - read uncommitted → niveau le plus bas : une transaction peut voir les modifications not yet committed d'autres transactions
 - ⇒ pb : dirty reads

Phantom reads

Un phantom read apparaît quand, au sein d'une même transaction, 2 requêtes identiques sont exécutées et que la collection de lignes retournée par la 2^{nde} est différente de celle de la 1^{ère}

	transaction 1	transaction 2
Ī	/* Query 1 */	
	SELECT * FROM users	
	WHERE age BETWEEN 10 AND 30;	

Phantom reads

Un phantom read apparaît quand, au sein d'une même transaction, 2 requêtes identiques sont exécutées et que la collection de lignes retournée par la 2^{nde} est différente de celle de la 1^{ère}

transaction 1		transaction 2
/* Query 1 */		
SELECT * FROM	users	
WHERE age BET	WEEN 10 AND 30;	
		/* Query 2 */
		INSERT INTO users VALUES (3,'Bob',27);
		COMMIT;

Phantom reads

Un phantom read apparaît quand, au sein d'une même transaction, 2 requêtes identiques sont exécutées et que la collection de lignes retournée par la 2^{nde} est différente de celle de la 1^{ère}

transaction 1	transaction 2
/* Query 1 */	
SELECT * FROM users	
WHERE age BETWEEN 10 AND 30;	
	/* Query 2 */ INSERT INTO users VALUES (3,'Bob',27); COMMIT;
/* Query 1 */	
SELECT * FROM users	
WHERE age BETWEEN 10 AND 30;	

⇒ Le 2^{ème} SELECT retourne 1 ligne supplémentaire

Phantom reads

- Note that Transaction 1 executed the same query twice. If the highest level of isolation were maintained, the same set of rows should be returned both times, and indeed that is what is mandated to occur in a database operating at the SQL SERIALIZABLE isolation level. However, at the lesser isolation levels, a different set of rows may be returned the second time.
- In the SERIALIZABLE isolation mode, Query 1 would result in all records with age in the range 10 to 30 being locked, thus Query 2 would block until the first transaction was committed. In REPEATABLE READ mode, the range would not be locked, allowing the record to be inserted and the second execution of Query 1 to include the new row in its results.

Non-repeatable reads

• Un *non-repeatable read* apparaît quand, au sein d'une même transaction, une même ligne est lue 2 fois mais est retournée avec des valeurs différentes

	transaction 1	transaction 2
i	/* Query 1 */	
	SELECT * FROM users WHERE id = 1;	

Non-repeatable reads

• Un *non-repeatable read* apparaît quand, au sein d'une même transaction, une même ligne est lue 2 fois mais est retournée avec des valeurs différentes

transaction 1	transaction 2
/* Query 1 */	
SELECT * FROM users WHERE id = 1;	
	/* Query 2 */
	UPDATE users SET age = 21 WHERE id = 1;
	COMMIT;
	<pre>/* in multiversion concurrency control,</pre>
	or lock-based READ COMMITTED */

Non-repeatable reads

• Un *non-repeatable read* apparaît quand, au sein d'une même transaction, une même ligne est lue 2 fois mais est retournée avec des valeurs différentes

```
transaction 1

/* Query 1 */
SELECT * FROM users WHERE id = 1;

/* Query 2 */
UPDATE users SET age = 21 WHERE id = 1;
COMMIT;
/* Query 1 */
SELECT * FROM users WHERE id = 1;
COMMIT;
/* Query 1 */
SELECT * FROM users WHERE id = 1;
COMMIT;
/* lock-based READ COMMITTED */
```

⇒ Le 2^{ème} SELECT retourne des valeurs différentes pour cette ligne

Non-repeatable reads

- In this example, Transaction 2 commits successfully, which means that its changes to the row with id 1 should become visible. However, Transaction 1 has already seen a different value for age in that row. At the SERIALIZABLE and REPEATABLE READ isolation levels, the DBMS must return the old value. At READ COMMITTED and READ UNCOMMITTED, the DBMS may return the updated value; this is a non-repeatable read.
- There are two basic strategies used to prevent non-repeatable reads. The first is to delay the execution of Transaction 2 until Transaction 1 has committed or rolled back. This method is used when locking is used, and produces the serial schedule T1, T2. A serial schedule does not exhibit non-repeatable reads behaviour.
- In the other strategy, as used in multiversion concurrency control, Transaction 2 is permitted to commit first, which provides for better concurrency. However, Transaction 1, which commenced prior to Transaction 2, must continue to operate on a past version of the database a snapshot of the moment it was started. When Transaction 1 eventually tries to commit, the DBMS checks if the result of committing Transaction 1 would be equivalent to the schedule T1, T2. If it is, then Transaction 1 can proceed. If it cannot be seen to be equivalent, however, Transaction 1 must roll back with a serialization failure.

Non-repeatable reads

- Using a lock-based concurrency control method, at the REPEATABLE READ isolation mode, the row with ID = 1 would be locked, thus blocking Query 2 until the first transaction was committed or rolled back. In READ COMMITTED mode, the second time Query 1 was executed, the age would have changed.
- Under multiversion concurrency control, at the SERIALIZABLE isolation level, both SELECT queries see a snapshot of the database taken at the start of Transaction 1. Therefore, they return the same data. However, if Transaction 1 then attempted to UPDATE that row as well, a serialization failure would occur and Transaction 1 would be forced to roll back.
- At the READ COMMITTED isolation level, each query sees a snapshot of the database taken at the start of
 each query. Therefore, they each see different data for the updated row. No serialization failure is possible
 in this mode (because no promise of serializability is made), and Transaction 1 will not have to be retried.

Systèmes transactionnels Dirty reads

• Un dirty read apparaît quand une transaction peut voir une ligne modifiée par une autre transaction encore en cours d'exécution (not yet committed)

```
transaction 1
                                                            transaction 2
/* Querv 1 */
SELECT * FROM users WHERE id = 1;
```

Systèmes transactionnels Dirty reads

• Un dirty read apparaît quand une transaction peut voir une ligne modifiée par une autre transaction encore en cours d'exécution (not yet committed)

Systèmes transactionnels Dirty reads

• Un dirty read apparaît quand une transaction peut voir une ligne modifiée par une autre transaction encore en cours d'exécution (not yet committed)

BUT3 Info - Anglet - 2025

Systèmes transactionnels Dirty reads

• Un dirty read apparaît quand une transaction peut voir une ligne modifiée par une autre transaction encore en cours d'exécution (not yet committed)

```
transaction 1

/* Query 1 */
SELECT * FROM users WHERE id = 1;

/* Query 2 */
UPDATE users SET age = 21 WHERE id = 1;

/* Query 1 */
SELECT * FROM users WHERE id = 1;

ROLLBACK; /* lock-based DIRTY READ */
```

⇒ Donnée erronée dans la transaction 1 car elle a lu une valeur *uncommitted* et la transaction 2 a annulé la modification de cette donnée

Conclusion

Isolation Levels vs Read Phenomena

Isolation level	Dirty reads	Non-repeatable reads	Phantoms
Read Uncommitted	may occur	may occur	may occur
Read Committed	-	may occur	may occur
Repeatable Read	-	-	may occur
Serializable	-	-	-

Isolation Levels vs Locks

Isolation level	Write Lock	Read Lock	Range Lock
Read Uncommitted	-	-	-
Read Committed	V	(1)	-
Repeatable Read	V	V	-
Serializable	V	V	V

- "V" indicates that the method locks for that operation, keeping that lock till the end of the transaction containing that operation
- (1) read (shared) locks are released immediately after the SELECT operation is performed

Conclusion

- Ces différents problèmes d'intégrité (cf. lost updates, phantom reads, non-repeatable reads, dirty reads) sont incontournables dès lors que plusieurs composants logiciels accèdent de manière concurrente à des ressources communes!
 - → transactions dans un SGBD
 - → applications accédant à des fichiers partagés
 - → processus utilisant une mémoire partagée
 - → services faisant appel à des ressources réseau communes
 - \rightarrow . . .
- ⇒ Besoin de mécanismes de synchronisation
 - nb : il peut être nécessaire de gérer les "rollbacks" au niveau applicatif pour réitérer la transaction

Plan du cours

- Introduction à la Sécurité Informatique
- Sécurité Bases de Données
- Gestion des Risques
 - Introduction
 - Vocabulaire
 - ISO 27005 Risk Manager
 - Bilan
- 4 Droit & Numérique

Gestion des risques liés à la sécurité de l'information

- L'enjeu : atteindre ses objectifs (de sécurité) sur la base de décisions rationnelles
 - Née dans le domaine financier dans les années 50 et étendue à de nombreux autres domaines tels que la gestion de projet, la sécurité des personnes, la sûreté de fonctionnement, le marketing, l'environnement ou encore la sécurité de l'information, la gestion des risques a toujours eu pour objectif de rationaliser des situations pour aider à une prise de décision éclairée.
 - Les choix effectués par les décideurs peuvent ainsi être faits au regard des éléments fournis par les risk managers. Et ces choix peuvent autant guider l'organisme vers l'atteinte de ses objectifs que faire évoluer sa stratégie.

Gestion des risques liés à la sécurité de l'information

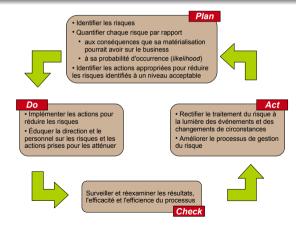
- Gestion des risques par la pratique
 - → méthodologie empirique
 - → sources de désaccords
- Gestion des risques par la théorie
 - → formalisme & organisation
 - → différentes normes & méthodes
 - EBIOS 2010
 - suite ISO/CEI 27000 notamment ISO/CEI 27005:2011 Risk Manager
 - → processus d'audit & de certification

Gestion des risques liés à la sécurité de l'information

- Des pratiques différentes mais des principes communs
 - le risque est décrit par un événement, ses conséquences et sa vraisemblance
 - le processus de gestion des risques comprend une étude du contexte, l'appréciation des risques, le traitement des risques, la validation du traitement des risques, la communication relative aux risques, le contrôle, dans une amélioration continue
- Le besoin d'une méthode
 - disposer d'éléments de langage communs
 - disposer d'une démarche claire et structurée à respecter
 - se baser sur un référentiel validé par l'expérience
 - s'assurer d'une exhaustivité des actions à entreprendre
 - réutiliser la même approche en amélioration continue et sur d'autres périmètres. . .

Gestion des risques liés à la sécurité de l'information Suite ISO/CEI 2700x

- 1ère norme de gestion des risques de la Sécurité des Systèmes d'Information (SSI)
 - standard international lié aux Systèmes de Management de la Sécurité de l'Information (SMSI)
- ISO 2700x ≡ famille des standards SMSI
- ISO/CEI 27000 introduction et vue globale de la famille des normes, ainsi qu'un glossaire des termes communs (mai 2009)
- ISO/CEI 27001 norme de certification des SMSI (publiée en 2005)
- ISO/CEI 27002 guide des bonnes pratiques en SMSI (dernière révision en 2005)
 - nb : précédemment connu sous le nom de ISO/CEI 17799, et avant BS 7799 Partie 1
- ISO/CEI 27006 guide de processus de certification et d'enregistrement (publié le 13 février 2007)



Gestion des risques liés à la sécurité de l'information Suite ISO/CEI 2700x

- Objectifs de l'ISO/CEI 27005:2011
 - la norme ISO 27005 explique en détail comment conduire l'appréciation des risques et le traitement des risques, dans le cadre de la sécurité de l'information
 - l'ISO 27005 propose une méthodologie de gestion des risques en matière d'information dans l'entreprise conforme à la norme ISO/CEI 27001
 - → elle a donc pour but d'aider à mettre en œuvre l'ISO/CEI 27001 (certification d'un SMSI)
 - la norme ISO 27005 peut néanmoins être utilisée de manière autonome dans différentes situations
 - elle applique à la gestion de risques le cycle d'amélioration continue PDCA (roue de Deming)
 - PLAN identification des risques, évaluation des risques et définition des actions de réduction des risques
 - DO exécution de ces actions
 - CHECK contrôle du résultat
 - ACT modification du traitement des risques selon les résultats

Gestion des risques liés à la sécurité de l'information Suite ISO/CEI 2700x

Gestion des risques liés à la sécurité de l'information EBIOS

- Expression des Besoins et Identification des Objectifs de Sécurité
- Méthode de gestion des risques élaborée par l'ANSSI 16
 - marque déposée par le Secrétariat général de la défense et de la sécurité nationale
 - ⇒ norme franco-française...
- Màj majeure en 2018 → EBIOS RM (Risk Manager)
 - → harmonisation du vocabulaire vis-à-vis des normes ISO 27001, ISO 27005,...
- Origine : rédaction de FEROS
 - nb : une fiche d'expression rationnelle des objectifs de sécurité est requise dans le dossier de sécurité de tout système traitant des informations classifiées
- 16. Agence Nationale de la Sécurité des Systèmes d'Information http://www.ssi.gouv.fr/

Gestion des risques liés à la sécurité de l'information EBIOS

Objectifs

- fournir une base commune de concepts et d'activités pragmatiques à toute personne impliquée dans la gestion des risques, notamment dans la sécurité de l'information
- satisfaire les exigences de gestion des risques d'un système de management de la sécurité de l'information (ISO 27001)
- définir une démarche méthodologique complète en cohérence et en conformité avec les normes internationales de gestion des risques (ISO 31000, ISO 27005,...)
- établir une référence pour la certification de compétences relatives à la gestion des risques

Domaine d'application

- secteur public / secteur privé
- petites structures (PME, collectivités territoriales,...) / grandes structures (ministère, organisation internationale, entreprise multinationale,...)
- systèmes en cours d'élaboration / systèmes existants

Gestion des risques liés à la sécurité de l'information **EBIOS**

- Positionnement par rapport aux normes
 - la méthode EBIOS respecte les exigences de l'ISO 27001 (norme d'exigences pour un SMSI)
 - elle peut exploiter les mesures de sécurité décrites dans la norme ISO 27002 (catalogue de bonnes pratiques)
 - elle est compatible avec l'ISO 31000 (cadre général pour toutes les normes sectorielles de gestion des risques)
 - o c'est une méthode pour mettre en œuvre le cadre défini dans l'ISO 27005 (cadre spécifique pour gérer les risques de sécurité de l'information)
 - elle permet d'exploiter l'ISO 15408 (critères communs)

Gestion des risques liés à la sécurité de l'information EBIOS vs. ISO 27005 (à l'origine)

EBIOS 2010

- + gestion des risques sur le SI dans sa globalité (y compris locaux, personnes,...)
- norme franco-française
- contexte (trop) complet dès le départ

ISO 27005:2011

- norme internationale
- + processus de certification
- + démarche incrémentale
- uniquement le SI

Gestion des risques liés à la sécurité de l'information EBIOS vs. ISO 27005 (actuellement, cf. Club EBIOS)

 La méthode EBIOS Risk Manager (EBIOS RM) a été mise à jour en 2024, et l'ISO 27005 en novembre 2022. Ces mises à jour sont majeures, et recentrent la gestion des risques autour des métiers, de la cybersécurité et de la protection de la vie privée.

• ISO 27005

- Elle décrit les grandes lignes d'une gestion des risques dans un contexte cyber : définition du contexte d'analyse, identification et évaluation des risques encourus, possibilités de traitement ou d'acceptation de ces derniers. Elle introduit un processus d'appréciation des risques conforme à l'ISO 31000, sans pour autant proposer de méthode au sens strict.
- Elle est construite en cohérence forte avec le couple de normes ISO 27001/27002 et reprenant le vocabulaire principalement défini dans l'ISO 27000, la norme ISO 27005 utilise comme nombre de systèmes de management la logique d'itération et d'amélioration continue.

Gestion des risques liés à la sécurité de l'information EBIOS vs. ISO 27005 (actuellement, cf. Club EBIOS)

EBIOS RM

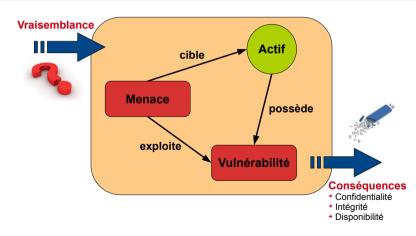
- La méthode EBIOS est une méthode d'analyse et d'évaluation des risques qui a aujourd'hui plus de 25 ans. Elle a été définie par l'ANSSI, avec le soutien du Club EBIOS. Elle décrit dans le détail la procédure à suivre pour dérouler une analyse des risques (démarche et bonnes pratiques).
- La dernière version de la méthode a permis de mettre l'accent sur l'agilité, et de substituer à la recherche d'exhaustivité une volonté de représentativité : l'idée n'est plus d'identifier tous les risques, mais uniquement les plus significatifs dans une approche permettant représenter aussi largement que possible l'espace des risques. Elle se veut aussi plus flexible en fonction de la maturité et de l'objectif fixé
- EBIOS RM n'est pas une norme, mais une méthode. Elle décrit des techniques pratiques pour permettre à ses utilisateurs d'appliquer le modèle décrit dans l'ISO 27005. Dans les faits, lors d'une démarche de mise en œuvre d'un SMSI implémentant la famille de normes ISO 2700x, se pose immédiatement l'obligation d'identifier si oui ou non la méthode d'analyse de risques sélectionnée est bien compatible avec le cadre normatif choisi. EBIOS RM apporte une solution.

Gestion des risques liés à la sécurité de l'information Objectif du cours

- Vous sensibiliser à la gestion des risques dans les systèmes d'information
 - adopter une démarche SSI dès la phase de conception du SI / des applications
 - comprendre les attentes des experts lorsque vous serez audités
 - transformer cet "effort" en "avantage concurrentiel" → projets, clients, etc.
- ⇒ Présentation des principes généraux de la gestion des risques dans la SSI selon la norme ISO 27005

BUT3 Info - Anglet - 2025

Risque


- Concept multidisciplinaire
 - assurance
 - → concept fondamental
 - droit
 - → événement éventuel, incertain, dont la réalisation ne dépend pas exclusivement de la volonté des parties et pouvant causer des dommages
 - écologie
 - → probabilité de survenance d'un danger
- 2 notions fondamentales
 - incertitude
 - dommage

Risque

- Risque informatique
 - → **probabilité plus ou moins grande** de voir une menace informatique se transformer en événement réel entraînant une perte
- Risque de sécurité de l'information
 - → possibilité (éventualité) qu'une menace donnée exploite une ou plusieurs vulnérabilités d'un actif ou d'un groupe d'actifs, causant ainsi des préjudices à l'organisme
 - il s'estime en termes de combinaison de la **vraisemblance** (probabilité d'occurrence) et de ses **conséquences**

Risque en sécurité de l'information

Plan du cours

- Modèles de contrôle d'accès discrétionnaires
- Modèles de contrôle d'accès obligatoires
- Modèles de contrôle d'usage
- Oracle
- Exemples
- Gestion des Risques
 - Introduction
 - Vocabulaire
 - ISO 27005 Risk Manager
 - Bilan

BUT3 Info - Anglet - 2025

Vocabulaire

Importance de la communication

- Dans la mise en œuvre d'un processus de gestion du risque, la communication joue un rôle primordial
- Le vocabulaire employé dans le cadre de ce processus doit être clairement défini
- C'est un langage commun pour l'ensemble des participants aux études

Vocabulaire

Quelques définitions

- Actif
 - > actif primordial / valeur métier
 - → critères de sécurité
 - → besoins de sécurité
 - actif support
 - → vulnérabilités
- Scénario de menace
 - → source de risque
 - → mode opératoire
- Événement redouté
 - → impact
- Risque

Vocabulaire Actif

- Toute ressource qui a de la valeur pour l'organisme et qui est nécessaire à la réalisation de ses objectifs
- Il en existe de deux types :
 - > actifs primordiaux / valeurs métiers (biens essentiels, *primary assets*)
 - □ actifs support (biens supports, supporting assets)

Vocabulaire

Actif primordial

- Il s'agit d'un actif qui peut être de deux types :
 - informations
 - processus, fonctions, activité
- Les actifs primordiaux constituent la valeur ajoutée du système d'information pour l'organisme
- Un actif primordial n'est pas porteur de vulnérabilité
- Ex Gestion des factures, liste des clients, liste des élèves

Vocabulaire Critère de sécurité

- Caractéristique d'un actif primordial / d'une valeur métier permettant d'apprécier ses différents besoins de sécurité
 - confidentialité
 - intégrité
 - disponibilité

Besoin de sécurité

- Définition précise et non ambiguë du niveau d'exigences opérationnelles relatives à un actif primordial pour un critère de sécurité donné (confidentialité, intégrité, disponibilité,...)
- Exemples
 - doit être disponible dans la journée
 - ▷ ne doit être connu que du groupe projet

Actif support

- C'est un actif sur lequel reposent des actifs primordiaux
- Les actifs supports sont porteurs de vulnérabilités
- Exemples
 - service du personnel
 - salle machine
 - utilisateur, administrateur

 - ▷ ordinateur portable

Vulnérabilité

- Caractéristique d'un actif support qui peut constituer une faiblesse ou une faille au regard de la sécurité des systèmes d'information
- Exemples
 - absence de sensibilisation des utilisateurs à la sécurité
 - crédulité du personnel

 - serveur dépendant de l'électricité

Actifs supports vs. actifs primordiaux

- Les actifs primordiaux constituent la valeur ajoutée du système d'information pour l'organisme
- Ils reposent sur les actifs supports qui, potentiellement, sont porteurs de vulnérabilités
- Dans une analyse de risque, pendant la phase d'inventaire, il est nécessaire de réaliser un tableau qui croise les actifs supports et les actifs primordiaux

Source de risque

- Chose ou personne à l'origine de menaces
- Elle peut être caractérisée par son type (humain ou environnemental), par sa cause (accidentelle ou délibérée) et selon le cas par ses ressources disponibles, son expertise, sa motivation, etc.
- Exemples
 - virus
 - utilisateurs
 - ancien membre du personnel ayant peu de compétences techniques et peu de temps mais susceptible d'avoir une forte motivation
 - pirate avec de fortes compétences techniques, bien équipé et une forte motivation liée à l'argent qu'il peut gagner

Menace

- Moyen type utilisé par une source de menace
- Exemples

 - piégeage du logiciel
 - > atteinte à la disponibilité du personnel
 - écoute passive
 - ▷ crue, incendie....

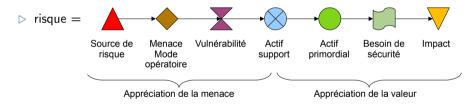
Impact

- Conséquence sur l'organisme de la réalisation d'une menace
- Exemples
 - ▶ perte d'image de marque vis-à-vis de la clientèle
 - ▶ perte financière à hauteur de 10% du chiffre d'affaires
 - infraction aux lois et aux règlements donnant lieu à des poursuites judiciaires à l'encontre du Directeur (le responsable des traitements)

Introduction
Vocabulaire
ISO 27005 Risk Manage
Bilan

Vocabulaire

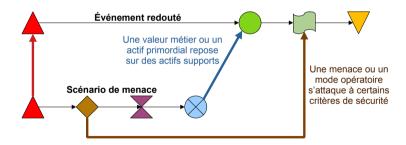
Risque


• Utilisez les éléments précédents pour définir le risque...

Les 7 composantes du risque

- Il est d'usage de décomposer le risque en 7 composantes
 - ▷ la source du risque
 - ▷ la menace ou le mode opératoire
 - la vulnérabilité
 - ▶ l'actif support
 - ▷ l'actif primordial ou la valeur métier
 - ▷ le besoin de sécurité
 - ▶ l'impact

Les 7 composantes du risque


• Il est d'usage de décomposer le risque en 7 composantes

NB source : Fred Kustyan, Ministère de la Transition Écologique (MTE), France

Les 7 composantes du risque

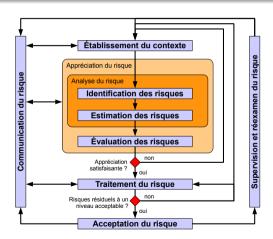
Croisement des événements redoutés et des scénarios de menace

Plan du cours

- Modèles de contrôle d'accès discrétionnaires
- Modèles de contrôle d'accès obligatoires
- Modèles de contrôle d'usage
- Oracle
- Exemples
- Gestion des Risques
 - Introduction
 - Vocabulaire
 - ISO 27005 Risk Manager
 - Bilan

BUT3 Info - Anglet - 2025

Liens


- Sources de documentation
 - normes ISO (International Organization for Standardization) http://www.iso.org/
 - méthode EBIOS http://www.ssi.gouv.fr/
 - documents HSC (Hervé Schauer Consultants) http://www.hsc.fr/
 - → documents HS2 (Hervé Schauer Sécurité) https://www.hs2.fr/

Processus de gestion du risque

- Approche itérative
 - Établissement du contexte
 - Appréciation du risque
 - → Identification des risques
 - → Estimation des risques
 - → Évaluation des risques
 - Traitement du risque
 - Acceptation du risque
- La méthode définit aussi 2 tâches à mener en parallèle
 - Communication du risque
 - Supervision et réexamen du risque

Processus de gestion du risque

BUT3 Info - Anglet - 2025

Processus de gestion du risque

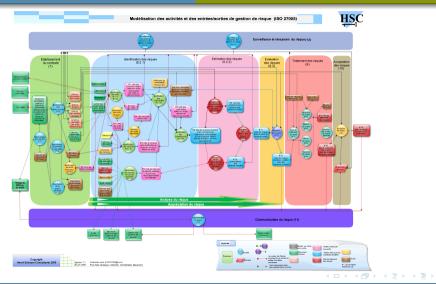
- Une telle approche itérative. . .
 - améliore la finesse de l'analyse à chaque itération
 - fournit une bonne répartition entre le temps et l'effort fourni pour identifier les mesures de sécurité
 - permet de traiter les risques en fonction des ressources et des moyens qui sont disponibles
 - facilite les liens entre les risques et les conséquences sur les processus métier
 - permet d'avancer lorsque les interlocuteurs sont absents ou les livrables incomplets
 - facilite la gestion des susceptibilités et des aspects politiques (...) entre les interviewés, les propriétaires d'actifs et de processus métier
 - tend progressivement vers une maîtrise des risques de haut niveau et qui soit conforme aux besoins de l'organisme

Terminologie

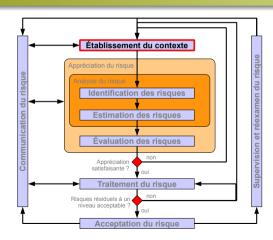
- Norme en anglais, traduite en français
 - risk analysis → analyse du risque
 - risk evaluation → évaluation du risque
 - risk estimation → estimation du risque
 - risk assessment \sim appréciation du risque

∧ Ne pas confondre

- analyse du risque ≡ quels risques? + quelles conséquences? + scénarios
- appréciation du risque ≡ faut-il traiter le risque?


Présentation de la méthode

- L'ISO 27005 est une norme "non directive"
 - explicite comment faire (le processus général)
 - tout en laissant l'entière liberté de comment on exécute chaque étape
- L'ISO 27005 peut couvrir des situations très diverses
 - avantage d'une norme "consensuelle"
 - inconvénient : la 1ère itération peut être "plus longue"
 - → définition des différents critères,
 - → des règles,
 - → des formules de calcul,
 - → etc.



Présentation de la méthode

- Une bonne présentation des principes essentiels de la méthode ISO 27005
 - → Méthode de management des risques ISO 27005 Hervé Schauer Consultants Paris. 15 avril 2010
 - schéma modélisant chaque activité et sous-activité de la méthode proposée par la norme ISO 27005
 - cas d'étude illustrant les différentes étapes de la méthode
 - toutes les explications indiquent les références aux sections de la norme (version ISO 27005:2008)

Processus

Étape 1 : Établissement du contexte Objectifs

- Définition du périmètre de l'étude

 - > corrections possible aux étapes ultérieures
 - ightharpoonup le contexte peut concerner un ensemble très large ou très resserré \sim tout un système d'information ou juste un sous-ensemble du SI
 - cycle PDCA → élargissement, intégration de nouveaux actifs

Définition des critères et échelles

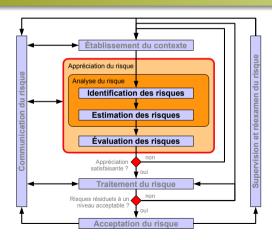
- Critères de base
 - critères d'impact (seuil de prise en compte)
 - l'impact est-il assez important pour que le risque doive être pris en compte dans l'analyse de risques ?
 - → bas niveau : vis-à-vis de l'actif ~ impact de la perte ou de l'atteinte d'un critère de sécurité (Confidentialité, Intégrite, Disponibilité)
 - → haut niveau : vis-à-vis de l'organisme, du processus métier, du projet ~ échelle de mesure ou critère d'estimation des conséquences (financières, délais, image, etc.)
 - > critères d'évaluation des risques (seuil de traitement)
 - le niveau de risque est-il assez élevé pour que le risque nécessite d'être traité?
 - - le niveau de risque résiduel est-il acceptable par la direction?

Définition des critères et échelles

- Pas d'échelles standard → ce doit être "pertinent" pour l'entreprise
- Les critères peuvent changer d'une itération à l'autre
 - cycle PDCA → adaptation à de nouveaux besoins
- D'autres échelles peuvent être utiles lors de l'analyse de risques
 - pas explicitement imposées lors de l'établissement du contexte
 - ex : échelle (ou critères) de valorisation des actifs
 - ex : échelles d'estimation...
 - des menaces (vraisemblance)
 - des vulnérabilités (difficulté d'exploitation)
 - d'appréciation de la vraisemblance des scénarios d'incidents

Définition des critères et échelles

- Étude de cas
 - - impact sur un actif ou besoin sur cet actif
 - > échelle de mesure des conséquences Pgo to example
 - conséquences de l'occurrence d'un scénario d'incident sur l'organisme, le métier, le projet
 - - utilisés par le RSSI ou le gestionnaire de risques SI
 - - validés par la direction et utilisés par la direction


Étape 1 : Établissement du contexte Synthèse

- Définir...
 - ▷ l'objectif du processus de gestion des risques (vision claire de ce sur quoi va porter la gestion des risques)

 - ▷ l'environnement dans lequel il s'inscrit (organisation, contraintes, etc.)
- Organiser et diriger la gestion des risques
 - → intervenants, rôles, chemins de décision, etc.

Processus

Étape 2 : Appréciation du risque Objectifs

- Identifier et évaluer
 - ▷ les actifs associés au contexte et leur propriétaire
 - ▷ les menaces qui pèsent sur ces actifs
 - les mesures de sécurité existantes
 - les vulnérabilités possibles
 - ▷ les conséquences de ces dernières
- Évaluer ≡ donner une note
- ⇒ Débouche sur l'élaboration de scénarii d'incidents

BUT3 Info - Anglet - 2025

Identification des risques

- Que peut-il arriver aux actifs qui composent le contexte?
 - → réunions, brainstorming
 - ~ réflexions individuelles
 - → approches scénarisées
 - → entretiens
 - → lectures
 - → expériences vécues, ...

Identification des risques

- Critères d'évaluation pour les actifs, menaces, conséquences
 - qualitatifs
 - quantitatifs
 - financiers
 - > etc.
- Les critères peuvent être quelconques
- Objectif = obtenir une note pour les différents éléments

BUT3 Info - Anglet - 2025

Identification des risques : quels actifs?

- Identification des actifs ⇒ cartographie des actifs
 - → actifs primordiaux ¹⁷
 - processus métier, activités métier
 - information
 - □ actifs en support ¹⁸
 - cadre organisationnel, site, personnel

R5D8 - Cybersécurité

- réseau, logiciels, matériel, etc.
- Pour info : Annexe B de l'ISO 27005 + ISO 27002 + ISO 15408 (CC)
- 17. EBIOS → biens essentiels
- 18. EBIOS \sim biens support

Identification des risques : quels actifs?

- Étude de cas

 - ▶ liste des processus métier reliés aux actifs ▶ go to example
 - → quels sont les actifs en support nécessaires?
 - ▷ liste des complète actifs (primordiaux et support) o go to example

Identification des risques : quelle est la valeur de ces actifs?

- Valorisation des actifs
 - ▷ il est important de déterminer la valeur de chaque actif o example
 - ⇒ l'un actif doit-il être traité ou pas dans l'analyse de risques ? (seuil) rego to example

Échelle de valorisation des actifs		
Valeur		Signification
1	Faible	Actif facilement remplaçable Coût d'achat faible Coût de maintenance faible Ne nécessite pas de compétences particulières
2	Moyen	Actif remplaçable dans la journée Coût d'achat moyen Coût de maintenance moyen Nécessite des connaissances de base
3	Élevé	Actif remplaçable dans la semaine Coût d'achat élevé Coût de maintenance élevé Nécessite des connaissances techniques particulières
4	Très élevé	Actif remplaçable dans le mois Coût d'achat très élevé Coût de maintenance très élevé Nécessite des connaissances spécifiques

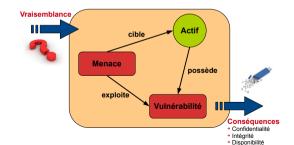
Identification des risques : quelles menaces pèsent sur ces actifs ?

Identification des menaces

- une menace est susceptible d'endommager les actifs tels que des informations, des processus et des systèmes et, par conséquent, des organismes
- les menaces peuvent être d'origine naturelle ou humaine et peuvent être accidentelles ou délibérées - il convient d'identifier les sources de menace à la fois accidentelles et délibérées
- une menace peut survenir de l'intérieur ou de l'extérieur de l'organisme
- il convient d'identifier les menaces de manière générique et par type
 - ex : des actions non autorisées, des dommages physiques, des défaillances techniques
- puis, lorsque cela est pertinent, des menaces individuelles particulières peuvent être identifiées au sein d'une classe générique

Identification des risques : quelles menaces pèsent sur ces actifs ?

- Identification des menaces (suite)
 - certaines menaces peuvent affecter plus d'un actif
 - → dans ce cas, elles peuvent avoir différentes conséquences selon l'actif affecté
 - comment identifier les menaces?
 - référentiels : Annexe C de l'ISO 27005 + ISO 27002 + ISO 15408 (CC)
 - entretiens : propriétaires/utilisateurs d'actifs, RH, experts, etc.
 - expérience : incidents survenus, appréciation de menaces antérieures, etc.
 - veille techno : organismes dédiés, compagnies d'assurance, etc.
 - NB seulement sur les actifs en support po to example
- → Aucune menace n'est négligée, même une menace imprévue!


Identification des risques : quelles vulnérabilités de ces actifs ?

- Objectif = identifier les vulnérabilités susceptibles d'être exploitées par des menaces pour nuire aux actifs ou à l'organisme
- Identification des mesures de sécurité existantes
 - éviter des travaux ou des coûts inutiles dus, par exemple, à la redondance des mesures de sécurité
 - ▷ identifier les mesures + contrôler qu'elles fonctionnent! ②
 - NB processus itératif ⇒ **réexamen régulier**
- Identification des vulnérabilités

Identification des risques : quelles vulnérabilités de ces actifs?

Identification des vulnérabilités

Étude de cas

Identification des risques : quels impacts et conséquences ?

Identification des conséquences

- Objectif = identifier les conséquences que des pertes de confidentialité, d'intégrité et de disponibilité peuvent avoir sur les actifs
- reformuler sous forme de scénario d'incident
 - → valeurs C,I,D pour chaque actif impacté dans le scénario
 - → + indicateur global sur chaque actif (ex : SOM(C,I,D))
 - → + indicateur global du scénario (ex : MAX(SOM(C,I,D)))
- occurrence du scénario d'incident = incident de sécurité
 - un scénario d'incident est la description d'une menace exploitant une certaine vulnérabilité, ou un ensemble de vulnérabilités, pour impacter un actif, ou un groupe d'actifs, lors d'un incident de sécurité de l'information (cf. ISO 27002, article 13)
- Étude de cas → go to example

Identification des risques : quelles mesures existantes ?

- Identification des mesures de sécurité existantes

 - NB 1^{ère} itération → aucune mesure de sécurité existante
- Étude de cas go to example

Estimation des risques

- L'estimation des risques se fait en trois étapes :
 - estimer l'importance des conséquences de l'occurrence d'un scénario es to example estimer l'importance des conséquences de l'occurrence d'un scénario estimer l'importance des conséquences de l'occurrence d'un scénario estimer l'importance des conséquences de l'occurrence d'un scénario estiment l'importance d'un scénario estiment l'importa
 - voir l'échelle de mesure des conséquence (contexte) <u>remind</u>
 - estimer la vraisemblance d'un scénario d'incident per la vraisemblance de la
 - c'est ce qui va permettre de "relativiser" certains scénarios de risque qui, s'ils sont "catastrophiques" (ex : une météorite frappe la Terre et détruit un pays entier), ont néanmoins très peu de chance de se produire...
 - estimer le niveau de risque (pour chaque scénario) es to example
 - objectif = donner une valeur à chaque risque afin de pouvoir ensuite les classer du plus critique au plus faible
 - exemple de formule : MAX(SOM(C,I,D)) * Vraisemblance

Estimation des risques : quelques rappels

- Libre à vous de définir vos propres échelles
 - > non définies dans la norme
 - autres exemples d'échelles (resserrées) :
 - actifs : notés de 0 (jetable) à 4 (vital)
 - vraisemblance des menaces : 0 (peu vraisemblable) à 2 (très vraisemblable)
 - facilité d'exploitation : 0 (très difficile) à 2 (facile)
 - pb des échelles impaires : 2 est "pile au milieu" de l'échelle 0→4
 - □ une échelle peu être très large (ex : 0→100)
 - mais, par exemple, comment choisir entre les valeurs 64, 65 ou 66 dans ce cas?

Estimation des risques : quelques rappels

- Idem pour les règle de calcul pour l'estimation des risques

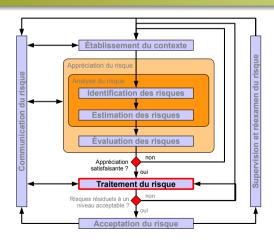
 - commencer avec des règles simples
 - ex : MAX(SOM(C,I,D)) * Vraisemblance

 - autre exemple :
 - somme des pondérations des trois critères (probabilité, facilité, valeur)
 - 0 à 2 → bénin
 - 3 ou 4 \sim moyen
 - supérieur à $5 \sim \text{grave}$

	Probabilité d'occurrence	Faible 0			Moyenne 1			Élevée 2		
	du risque									
	Facilité d'exploitation	F	М	Е	F	М	Е	F	М	Е
		0	1	2	0	1	2	0	1	2
Valeur de l'actif	0	0	1	2	1	1	2	2	1	2
	1	1	2	3	2	2	3	3	2	3
	2	2	3	4	3	3	4	4	3	4
	3	3	4	5	4	4	5	5	4	5
	4	4								

Évaluation des risques

- Étape de prise de décision Pgo to example


 - établir des priorités, fixer des seuils
- Analyse des risques ⇒ comprendre ceux-ci, les expliquer aux décideurs
- NB On peut éventuellement "redresser" les résultats de l'estimation des risques du fait de contraintes qualitatives difficiles à chiffrer (obligations contractuelles, réglementation, notoriété, etc.)

Évaluation des risques

- Prise de décision ?
 - > nous avons défini le **niveau de risque** pour chaque scénario (estimation des risques)
 - ▷ les critères d'évaluation des risques (établissement du contexte) et les formules de calcul nous ont permis de prioriser ces risques
 - ⇒ point de contrôle : l'appréciation est-elle satisfaisante?
 - oui \sim on passe à la définition du plan de traitement
 - non → on refait une itération

Étape 3 : Traitement du risque

Processus

Étape 3 : Traitement du risque

Définition du plan de traitement

- Pour définir les options de traitement :

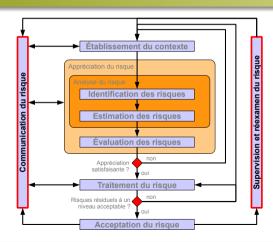
 - intégration des parties concernées
 - perception des risques par celles-ci
 - communication avec elles
 - les scénarios qui ont été définis permettent d'argumenter de manière objective

Etape 3 : Traitement du risque

Définition du plan de traitement

- 4 options pour traitement du risque (terminologie ISO 27005)
 - - → l'activité amenant le risque doit être éliminée
 - > réduction du risque (risk reduction)
 - → le risque doit être diminué
 - ⇒ indiguer et chiffrer les mesures de sécurité à mettre en place
 - > transfert du risque (risk transfer)
 - → le risque sera transféré à une autre "entité" capable de le gérer ex: assurance, sous-traitant, etc.
 - maintien du risque (risk retention)
 - → le risque est maintenu tel quel
- NB Chaque option produit un risque résiduel à évaluer

Étape 3 : Traitement du risque


Étapes vers le plan de traitement

- Pour chaque scénario d'incident identifié
 - o choix du traitement et mesures de sécurité à mettre en œuvre
 - calcul du risque résiduel (estimé)
 - validation par la direction des risques acceptés avec justification de leur choix
 go to example
 - peut déroger aux règles d'évaluation des risques (cf. critères d'acceptation)
 ex : coût jugé trop élevé, avantages intéressants à maintenir un risque, etc.
 - les dérogations doivent être justifiées et documentées
 - → à prendre en compte à la prochaine itération

Étape 4 : Communication & Surveillance

Processus

BUT3 Info - Anglet - 2025

Étape 4 : Communication & Surveillance

2 étapes souvent négligées ©

- La norme ISO 27005 définit 2 tâches supplémentaires malheureusement souvent sous-estimées!
 - > communication du risque
 - une communication efficace entre les parties prenantes est essentielle puisqu'elle peut avoir une forte influence sur les décisions à prendre
 - cette communication garantit que les personnes responsables de la mise en œuvre de la gestion du risque et que les personnes ayant un intérêt direct comprennent les fondements sur lesquels les décisions sont prises et les raisons pour lesquelles des actions spécifiques sont nécessaires
 - cette communication est bidirectionnelle
 - ⇒ acceptabilité des décisions

Étape 4 : Communication & Surveillance

2 étapes souvent négligées ©

- La norme ISO 27005 définit 2 tâches supplémentaires malheureusement souvent sous-estimées !
 - surveillance et réexamen du risque
 - il convient de surveiller et de réexaminer les risques et leurs facteurs (à savoir valeur des actifs, impacts, menaces, vulnérabilités et vraisemblance) pour identifier au plus tôt toutes les modifications dans le contexte de l'organisme et pour maintenir une cartographie complète des risques
 - de nouvelles menaces, vulnérabilités ou modif de la vraisemblance ou des conséquences peuvent accroître les risques appréciés auparavant comme des risques peu élevés
 - ⇒ supervision & évolution du SI
 - veille techno, CERT (computer emergency response team), etc.
 - ⇒ retours d'expérience

Bilan de l'ISO 27005

Ce qu'elle apporte

- S'intègre normalement dans un SMSI (ex : norme ISO 27001)

 - ⇒ attention à ne pas oublier d'appliquer le plan de traitement!
- Un processus comme l'ISO 27005 permet de garder un historique significatif
 - b des risques, hypothèses, scénarios envisagés

 - b des plans de traitement, dérogations, contraintes spécifiques
 - ⇒ maîtriser son SI!

Bilan de l'ISO 27005

Ses défauts

- C'est une norme
 - ⇒ payante
 - ⇒ difficile à faire évoluer
- Base de connaissance des risques minimale
 - □ une partie de la méthode en annexe(s) bien qu'indispensable au fonctionnement
 - ⇒ consulter également d'autres référentiels (ex : ISO 15408 (CC), EBIOS)
- Une certaine liberté

Bilan de l'ISO 27005

Ses avantages

- Méthode compréhensible
 - aucune notion trop complexe
 - vocabulaire conforme au langage courant
 - vocabulaire cohérent de bout en bout
- Méthode pragmatique et accessible à tous
 - aucune étape infaisable même si la précédente n'est pas terminée
 - production d'un travail exploitable et utile rapidement
- Application de l'amélioration continue (cycle PDCA)
 - on peut commencer petit et améliorer progressivement
 - adaptée aux changements (pas juste une appréciation des risques à l'instant t)
- Impose à la direction de prendre ses responsabilités!

Plan du cours

- Modèles de contrôle d'accès discrétionnaires
- Modèles de contrôle d'accès obligatoires
- Modèles de contrôle d'usage
- Oracle
- Exemples
- Gestion des Risques
 - Introduction
 - Vocabulaire
 - ISO 27005 Risk Manager
 - Bilan

Bilan

- Vous savez maintenant faire une analyse de risques! ©
- L'ISO 27005 et EBIOS RM sont très proches
 - ▶ leurs processus sont organisés différemment, mais on retrouve globalement les mêmes étapes
 - leurs vocabulaires ont été harmonisés
 - > sont dorénavant plus complémentaires que concurrentes
- Ce sont la pratique et l'expérience qui feront la différence entre les risk managers
 - → y compris les échecs...

Plan du cours

- Introduction à la Sécurité Informatique
- 2 Sécurité Bases de Données
- Gestion des Risques
- 4 Droit & Numérique
 - Introduction
 - Protection des Données Personnelles
 - Et bientôt...
- Conclusion

Droit & Numérique

- La prise en compte des aspects juridiques en SSI est multiple :
 - Droit d'auteur & propriété intellectuelle

 - Respect des différentes réglementations en vigueur
 - Protection des données personnelles

Les textes fondateurs

- Loi nº 78-17 du 6 Janvier 1978 relative à l'informatique, aux fichiers et aux libertés
- Directive européenne n° 95/46/CE du 24 octobre 1995
- Charte des droits fondamentaux de l'Union Européenne
 - → Chapitre II : libertés
- Règlement Général pour la Protection des Données (RGPD)
 - → entré en vigueur le 25 mai 2018
 - → règlement européen
 - ⇒ pas de transposition nationale
 - ⇒ est "obligatoire dans tous ses éléments et directement applicable dans tout État membre"

CNIL

- La France, pionnière en matière de données personnelles, a très vite réalisé les risques de l'informatique pour les libertés de la personne humaine et a réagi en se dotant depuis 1978 d'une législation traitant de la protection de ces données face aux dangers d'une informatique grandissante : la loi du 6 janvier 1978 dite "informatique et libertés".
- La Commission Nationale de l'Informatique et des Libertés (CNIL) est une autorité administrative indépendante née de l'adoption de la loi précitée.
- La mission générale de la CNIL est, face aux dangers de l'informatique, de protéger la vie privée et les libertés individuelles ou publiques.

CNII

- La CNIL est une autorité administrative indépendante qui fonctionne avec une dotation du budget de l'État.
- Elle informe et conseille les personnes sur leurs droits : elle recoit les réclamations. pétitions, plaintes relatives aux traitements de données personnelles et répond par des avis, délibérations ou recommandations.
- Elle régule et recense les fichiers de données personnelles : elle autorise ou non la création des fichiers
- Elle peut opérer des contrôles dans les entreprises, des enquêtes, des auditions de personnes.
- La CNIL n'est pas un juge. Il faut saisir le juge pour obtenir des dommages-intérêts au titre de la responsabilité civile en cas de préjudice.

Notion de données sensibles

- Attention (→ responsables de traitements) : En pratique une confusion est parfois opérée entre :
 - ▷ "les données qui sont sensibles pour une organisation" (ex : des données financières pour une entreprise)
 - ▷ le régime juridique des "données sensibles, au sens de la loi de 1978"
- Des données sensibles pour une entreprise (l'évolution de son chiffre d'affaire, ses processus d'acquisition de clientèle,...) ou une administration (organisation interne, dossiers politiquement et médiatiquement sensibles,...) ne sont pas nécessairement des données sensibles au sens de la loi de 1978.

Notion de données sensibles

- Cette distinction est importante car seul le traitement de *données sensibles au sens* de la loi informatique et libertés devra répondre au régime juridique décrit ci-après.
- Peu importe qu'une organisation traite des *données qui lui sont sensibles*, dès lors que ces données ne sont pas des données personnelles.

Loi "informatique et libertés"

La loi de 1978, dite loi "informatique et libertés", instaure de nombreux droits et principes fondamentaux relatifs "à la protection des personnes physiques à l'égard des traitements de données à caractère personnel".

- Principe de finalité
 - Les données personnelles ne peuvent être collectées, traitées, conservées ou transmises à des tiers qu'en vue de réaliser des finalités déterminées, légitimes et compatibles entre elles.

- Principe de loyauté et de transparence
 - La collecte, le traitement, la conservation des données personnelles et leur transmission éventuelle à des tiers doivent s'effectuer de manière loyale.
 - Cela suppose que les données ne soient pas collectées et traitées à l'insu de la personne concernée et que les personnes soient informées de l'identité et du lieu d'établissement de la personne qui traite ces données, des finalités poursuivies, du caractère obligatoire ou facultatif du traitement des données, des destinataires des informations, ainsi que toute information nécessaire à l'exercice de leurs droits.

- Principe de la pertinence et de l'exactitude des données
 - Les données personnelles faisant l'objet d'un traitement doivent être pertinentes au regard des finalités poursuivies. Elles doivent être exactes et mises à jour.
- Principe du consentement pour les traitements de données sensibles
 - Lorsque des traitements portent sur des données sensibles (religion, opinion politique ou philosophique, appartenance syndicale, origine raciale et ethnique, santé et vie sexuelle), celles-ci ne peuvent être collectées qu'avec le consentement des personnes.

- Principe d'accès, de rectification et d'opposition
 - ▶ Les personnes doivent se voir reconnaître les droits d'accéder, sans subir de coût dissuasif, à toute donnée les concernant, de corriger les données incomplètes ou inexactes et de s'opposer sans avoir à se justifier à l'exploitation de leurs données à des fins commerciales.
- Principe de sécurité
 - ▶ Le code pénal incrimine le traitement, sans que soient prises les mesures de précaution, et prévoit des sanctions à l'encontre de l'administrateur ne protégeant pas assez efficacement son système (délit de manquement à la sécurité).

- Principe du droit à l'oubli
 - ▶ Le code pénal incrimine le fait, sans l'accord de la CNIL, de conserver une information sous la forme nominative au-delà de la durée prévue à la demande d'avis ou à la déclaration préalable.
- Principe de protection de la considération et de l'intimité
 - Le fait de porter à la connaissance d'un tiers des images portant atteinte à la considération de l'intéressé ou à l'intimité de sa vie privée est condamnable.
 - Cette divulgation est sanctionnée encore plus sévèrement si elle a été faite par imprudence ou négligence (délit d'atteinte à la considération ou à l'intimité).

Résumé droits & obligations

- Les droits des personnes
 - Droit à l'information

 Toute personne a le droit de savoir si elle est fichée et dans quels fichiers elle est recensée.
 - ▶ Droit d'accès
 [...] a le droit d'interroger le responsable d'un fichier pour savoir s'il détient des informations sur elle et d'en obtenir la communication.
 - ▶ Droit de rectification
 [...] a le droit de contrôler l'exactitude des données et de les faire rectifier.
 - ▶ Droit d'opposition
 [...] peut s'opposer pour des motifs légitimes à figurer dans un fichier ou de voir communiquer des informations sur elle à des tiers. Les personnes peuvent saisir la CNIL en cas de difficultés dans l'exercice de leurs droits

Résumé droits & obligations

- Les obligations des responsables du traitement
 - Obligation d'information préalable des personnes concernées dont on doit obtenir le consentement exprès.
 - Obligation d'assurer la sécurité et la confidentialité des données collectées et traitées.
 - Deligation d'une collecte et d'un traitement ayant une finalité précise et effectués de façon licite et loyale.
 - Deligation de déclaration préalable à la CNIL des traitements informatiques de données personnelles.

Données à caractère personnel

Points clés

- Les données sont des données à caractère personnel dès lors qu'elles portent sur une **personne identifiée ou identifiable**, la personne concernée.
- Une personne est identifiable si des informations complémentaires peuvent être obtenues sans effort déraisonné, permettant l'identification de la personne concernée.
- L'authentification s'entend du fait de démontrer qu'une certaine personne possède une certaine identité et/ou est autorisée à exercer certaines activités.
- NB : identification ≠ authentification

Données à caractère personnel

Points clés

- ▷ Il existe des catégories particulières de données, appelées "données sensibles", énumérées dans la directive relative à la protection des données, qui requièrent une protection accrue et, par conséquent, sont soumises à un régime juridique spécial.
- Les données sont anonymisées si elles ne contiennent plus d'identifiants; elles sont pseudonymisées si les identifiants sont cryptés.
- Contrairement aux données anonymisées, les données pseudonymisées sont des données à caractère personnel.

Caractère identifiable d'une personne

- Dans le droit de l'UE, une information contient des données sur une personne si :
 - □ une personne est identifiée dans cette information
 - ou > si une personne, bien que non identifiée, est décrite dans cette information d'une manière permettant de découvrir qui est la personne concernée en menant d'autres recherches
- Les deux types d'informations sont protégés de la même manière par le droit européen en matière de protection des données.
 - noms non uniques ⇒ date et lieu de naissance, numéros de citoyens,...
 - ère du numérique ⇒ données biométriques (empreintes digitales, photos numériques, aspects rétiniens) pour l'identification des personnes

Authentification

- L'authentification est la procédure par laquelle une personne peut prouver qu'elle possède une certaine identité et/ou est autorisée à faire certaines choses.
 - ▶ Par la comparaison de données biométriques (une photo ou les empreintes digitales d'un passeport) avec les données de la personne qui se présente à un contrôle d'immigration.
 - En demandant des informations que seule la personne possédant une certaine identité ou autorisation devrait connaître (numéro d'identification personnel (PIN) ou un mot de passe).
 - En demandant la présentation d'un certain objet qui devrait exclusivement se trouver en la possession de la personne ayant une certaine identité ou autorisation (une carte magnétique spéciale ou la clé d'un coffre en banque).

Authentification

- L'authentification est la procédure par laquelle une personne peut prouver qu'elle possède une certaine identité et/ou est autorisée à faire certaines choses.
 - Dutre les mots de passe ou cartes magnétiques, parfois associés à des codes PIN, les signatures électroniques sont un outil particulièrement utile pour identifier ou authentifier une personne dans des communications électroniques.
- NB : L'authentification ne nécessite pas de stocker les données personnelles (ex : empreinte digitale) sur le serveur, contrairement à l'identification.

Catégories particulières de données à caractère personnel

- Il existe des catégories particulières de données qui, par leur nature, peuvent faire courir un risque aux personnes concernées quand elles font l'objet d'un traitement et requièrent donc une protection accrue :

 - données à caractère personnel révélant les opinions politiques, convictions religieuses ou autres convictions

Données anonymisées et pseudonymisées

- Principe de la conservation des données pendant une durée limitée :
 - ▷ les données doivent être conservées "sous une forme permettant l'identification des personnes concernées pendant une durée n'excédant pas celle nécessaire à la réalisation des finalités pour lesquelles elles sont collectées ou pour lesquelles elles sont traitées ultérieurement"
- ⇒ Il pourrait être nécessaire d'anonymiser des données si un responsable du traitement souhaite les conserver alors qu'elles ne sont plus d'actualité et qu'elles ne servent plus leur finalité initiale.

Données anonymisées et pseudonymisées

Données anonymisées

- Des données sont anonymisées si tous les éléments identifiants ont été supprimés d'un ensemble de données à caractère personnel.
- Les informations ne doivent plus contenir aucun élément qui soit susceptible, au moyen d'un effort raisonnable, de servir à réidentifier la ou les personnes concernées.
- ▶ Lorsque des données ont été correctement anonymisées, elles ne sont plus des données à caractère personnel.

Données anonymisées et pseudonymisées

Données pseudonymisées

- Les informations personnelles contiennent des identifiants, tels que le nom, la date de naissance, le sexe ou l'adresse.
- Lorsque des informations personnelles sont pseudonymisées, les identifiants sont remplacés par un pseudonyme.
- La pseudonymisation est notamment obtenue par cryptage des identifiants figurant dans les données à caractère personnel.
- Il ne doit pas être possible de relier facilement les données et les identifiants. Pour quiconque ne possède pas la clé de décryptage, les données pseudonymisées peuvent être difficilement identifiables.
- De lien avec l'identité demeure sous la forme du pseudonyme associé à la clé de décryptage. Pour toute personne habilitée à utiliser la clé de décryptage, une nouvelle identification est possible aisément ⇒ données personnelles

Une constante évolution

- Règlement Général pour la Protection des Données (RGPD) le 25 mai 2018
- Règlement ePrivacy (25 mai 2018?)
 - → réforme la directive 2002/58/CE du 12 juillet 2002
 - → relatif au traitement des données à caractère personnel et la protection de la vie privée dans le secteur des communications électroniques
- Plusieurs référentiels de sécurité informatique seront rendus opposables "dès 2018"
 - → source Agence des Systèmes d'Information Partagés de santé (ASIP Santé)
 - → ex : référentiels d'interopérabilité
- Publication récente de plusieurs règlements sur la donnée

RGPD

- Rien de révolutionnaire!
 - ▷ en France nous avions déjà la loi "informatique et libertés"
- Dans les grandes lignes, le RGPD cherche à renforcer la responsabilité des sociétés amenées à gérer des informations personnelles. Ses différentes dispositions cherchent donc à assurer la protection de ces données, mais aussi leur traçabilité, et le suivi précis des traitements qui en seront faits.

RGPD

- Le poste de DPO (Data Protection Officer) s'inscrit dans le prolongement de ce que la CNIL avait déjà initié avec son Correspondant Informatique et Libertés (CIL), avec un niveau de responsabilité similaire mais des prérogatives étendues.
- Ce pilote en interne est censé cartographier l'ensemble des traitements de données personnelles réalisés par l'entreprise pour identifier les carences et proposer une optimisation des processus.
 - NB : La CNIL recommande également la création d'une documentation permettant de justifier des mesures entreprises en cas d'enquête de conformité.

RGPD & PIA

- L'Étude d'Impact sur la Vie Privée (EIVP) était la traduction utilisée par la CNIL pour le Privacy Impact Assessment (PIA).
- L'application du nouveau règlement européen RGPD impose (en partie) la réalisation d'une analyse d'impact relative à la protection des données (ou DPIA pour Data Protection Impact Assessment).
- Cette démarche, repose sur une analyse de risques sécurité orientée uniquement sur les risques visant les données personnelles et leurs impacts sur les droits et libertés des personnes concernées par ces données.

RGPD & PIA

- Le DPIA n'est pas obligatoire pour l'ensemble des traitements, mais uniquement pour les traitements présentant "un risque élevé pour les droits et libertés des personnes physiques"
 - → les traitements à grande échelle
 - → la surveillance systématique à grande échelle d'une zone accessible au public (notamment la vidéosurveillance)
 - → les décisions automatiques produisant des effets juridiques (pour des offres de prestations. ou le choix de contractualisation)
 - → le traitement de données sensibles (données de santé, opinions politiques, orientation sexuelle)
 - → l'évaluation ou la notation basée sur des données personnelles, y compris le profilage et la prédiction
 - → le traitement de données biométriques, de données relatives à des condamnations pénales et à des infractions

ePrivacy

- Là où le RGPD s'attache à la protection des données personnelles dans leur ensemble, ePrivacy se concentrera plus précisément sur l'exploitation des données issues des communications.
 - Avec ce texte, la Commission européenne affiche sa volonté de remettre au premier plan la notion de consentement de l'internaute, en particulier pour ce qui concerne la question des cookies.
 - ▷ Il sera difficile d'esquiver son impact sur les pratiques en matière de marketing...

ePrivacy

- Aujourd'hui, la norme est au cas par cas, ce qui signifie que chaque éditeur se charge de recueillir le consentement du visiteur avant de distribuer les traceurs dédiés aux opérations de ciblage.
- Demain, le règlement ePrivacy prévoit que le consentement se fasse au niveau des options du navigateur Web, de façon globale.

ePrivacy

- Lourde de conséquence pour l'ensemble des acteurs du Web, la mesure sera âprement discutée jusqu'à l'adoption définitive du règlement ePrivacy, (qui était) prévue pour la fin de l'année 2017. Il ne restera(it) ensuite que six mois pour se mettre en conformité...
- Le 07/10/2024 le CEPD (Comité Européen de la Protection des Données) a adopté la version finale des lignes directrices sur le champs d'application technique des dispositions sur le "traçage" de la directive ePrivacy...

Domaine de la santé

- Le 6 octobre 2017, le directeur général de l'Agence des systèmes d'information partagés de santé (ASIP Santé) a assuré qu' "au moins trois référentiels de sécurité informatique seront publiés par arrêtés ministériels et rendus opposables dès 2018".
- Élaboration d'un cadre d'interopérabilité des systèmes d'information de santé, la création d'un espace de confiance "pour l'ensemble des interactions supposées par l'e-santé", notamment via :
 - ▷ les messageries sécurisées de santé (MSSanté)
 - ▷ l'adoption d'une politique générale de sécurité des systèmes d'information de santé (PGSSI-S)

Domaine de la santé

- Parmi les référentiels qui seront rendus opposables dès 2018 par arrêté ministériel (dixit) :
 - ▷ l'un porte sur l'identification
 - ▷ l'autre sur l'authentification
 - ▷ le troisième sur la gouvernance de la sécurité
- Parallèle avec les actions menées sur la sécurité informatique
 - → la loi prévoit aussi que les référentiels d'interopérabilité soient rendus opposables juridiquement
- En 2019 l'ASIP Santé devient l'agence du numérique en santé et... rien...

Partage de données

- Avec l'émergence des environnements connectés, IoT, smart-*, IA & ML le législateur propose de nouveaux règlements :

 - ► LRN → Loi pour une République Numérique (07/10/2016)

 https://fr.wikipedia.org/wiki/Loi pour une République numérique
 - Une stratégie européenne pour les données (19/02/2020) https://eur-lex.europa.eu/legal-content/FR/TXT/?uri=CELEX%3A52020DC0066
 - DGA → Data Governance Act (24/09/2023) https://eur-lex.europa.eu/legal-content/FR/ALL/?uri=CELEX%3A52020PC0767
 - Data Act (11/01/2024)

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A68%3AFIN

Partage de données

- Voire également de nouveaux concepts :
 - ▶ Open Data
 - Communs numériques
- En s'adaptant aux nouveaux usages :

 - DSA → Digital Services Act (02/2024)

 fixe un ensemble de règles pour responsabiliser les plateformes numériques et lutter contre la diffusion de contenus illicites ou préjudiciables ou de produits illégaux : attaques racistes, images pédopornographiques, désinformation, vente de drogues ou de contrefaçons... → succède à la directive dite e-commerce du 8 juin 2000, devenue dépassée

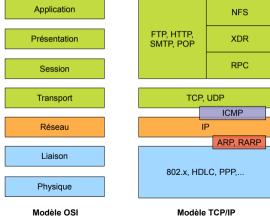
Plan du cours

- Introduction à la Sécurité Informatique
- Sécurité Bases de Données
- Gestion des Risques
- 4 Droit & Numérique
- Conclusion

D'autres facettes de la sécurité informatique

- Dans ce cours nous nous sommes essentiellement intéressés à la sécurité informatique au niveau applicatif
 - → règlement & politique de sécurité
 - → sécurité dans les bases de données
 - → sécurité dans les applications Java
- Voire même à un niveau encore supérieur. . .
 - → gestion des risques dans les systèmes d'informations
 - → droit & numérique
- Mais la Sécurité des Systèmes d'Information (SSI) recours à bien d'autres techniques
 & technologies

BUT3 Info - Anglet - 2025


Sécurité réseau

Modèle OSI (Open Systems Interconnect) en 7 couches

application	c'est le programme qui a besoin du réseau pour communiquer ex : navigateur web (HTTP), logiciel de messagerie (POP, IMAP, SMTP) ou de transfert de fichier (FTP), telnet,
présentation	responsable de la représentation des données (de telle sorte qu'elle soit indépendante du type de microprocesseur ou du système d'exploitation par exemple) et, éventuellement, du chiffrement (ex : HTML)
session	en charge d'établir et maintenir des sessions (ie. débuter le dialogue entre 2 machines : vérifier que l'autre machine est prête à communiquer, s'identifier,)
transport	en charge de la liaison d'un bout à l'autre; s'occupe de la fragmentation des données (fichiers) en petits paquets et vérifie éventuellement qu'elles ont été transmises correctement et dans l'ordre (ex : TCP, UDP)
réseau	en charge du transport, de l'adressage et du routage des paquets entre extrémités distantes, à travers le réseau (ex : IP)
liaison	en charge de transmettre des trames ; fournit également la détection d'erreur (retransmission) et la synchronisation (ex : transmission de trames entre nœuds d'un segment Ethernet)
physique	responsable de la transmission de bits : codage, modulation, (ex : normes des modems V23, V92,)
support	c'est le support de transmission lui-même : un fil de cuivre, une fibre optique, les ondes hertziennes, une liaison infrarouge

Sécurité réseau

Comparaison modèle OSI & modèle TCP/IP

Sécurité réseau

- De nombreux mécanismes existent pour sécuriser le réseau du système d'information
 - sécurité du médium de communication
 - → Wi-Fi sécurisé (ex : WPA & WPA2), sauts de fréquence,...
 - architecture du réseau
 - → VLANs, routage, firewall, DMZ, NAT, PAT, VPN,...
 - sécurité des services réseau
 - → SSL, HTTP, FTP, WebDAV, NFS, Samba, DNS, DHCP, SSH, telnet, NTP, proxy,...
 - supervision du réseau
 - → SNMP, Nagios, Syslog, IDS,...

Sécurité système

- Bien évidemment, la sécurité informatique concerne également l'administration système
 - système d'exploitation
 - → mises à jour de l'OS, patchs de sécurité, services activés,...
 - logiciels liés à la sécurité
 - → antivirus, détection des fichiers système modifiés, surveillance des processus exécutés,...
 - politique de sécurité
 - → gestion des utilisateurs & des groupes, permissions, GPO sous Windows,...
 - → horaires & lieux de connexion, traçabilité,...

Sécurité système

- Sécurité & aspects matériels
 - tolérance aux pannes
 - → onduleur & alim. de secours. alim. redondante. RAID
 - → virtualisation, clusters de serveurs, multi-sites....
 - reprise après "sinistre" la + rapide possible
 - → gestion des sauvegardes
 - → maquettes pour réinstaller les OS. les applis, les licences
 - sécurité des locaux
 - → accès, protection incendie, inondation....
 - renouvellement du matériel
 - → garantie, suivi constructeur, dispo. des mises à jour,...
 - → anticiper les besoins, prévoir les évolutions,...

Sécurité applicative

- Certains mécanismes de sécurité son implémentés au niveau des couches applicatives
 - protocoles de communication
 - → RMI, CORBA, Web Services, WSS,...
 - > chiffrement des échanges

 - transaction, session, security token,...
 - > "intercepteurs" pour mettre en place des politiques de sécurité particulières
 - mécanismes d'authentification applicative
 - → SSO, CAS, Radius,...
 - Description provided provided

 - Dobjectif : décharger les applis web & services réseau de l'authentification

Communication & formation

- Comme le précisent clairement les différentes méthodes de gestion des risques (quel que soit le domaine d'ailleurs), la sécurité ne peut être assurée sans la "participation" des utilisateurs
 - communication
 - → expliquer/justifier les mécanismes mis en œuvre
 - → informer les utilisateurs des enjeux, des ressources sensibles
 - → établir des procédures
 - → rassurer & mettre en confiance les partenaires, clients,...
 - formation
 - → former les utilisateurs aux outils & logiciels

 ▷ limiter les erreurs liées à une mauvaise utilisation
 - → sensibiliser les utilisateurs aux objectifs de sécurité (cf. CID) pour certaines données ▷ appliquer la PSSI, les procédures,...

Merci de votre attention

